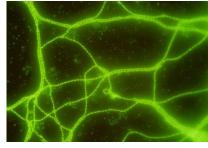
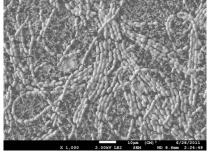
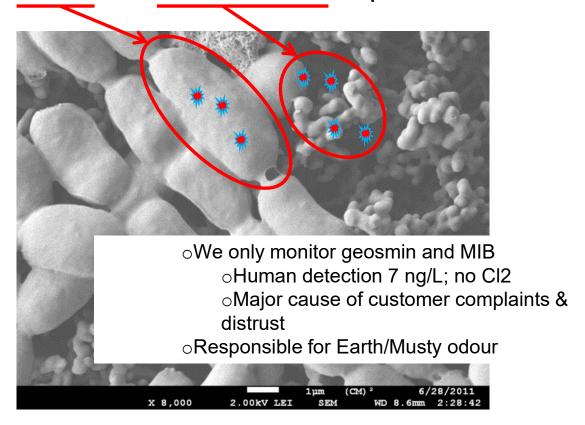


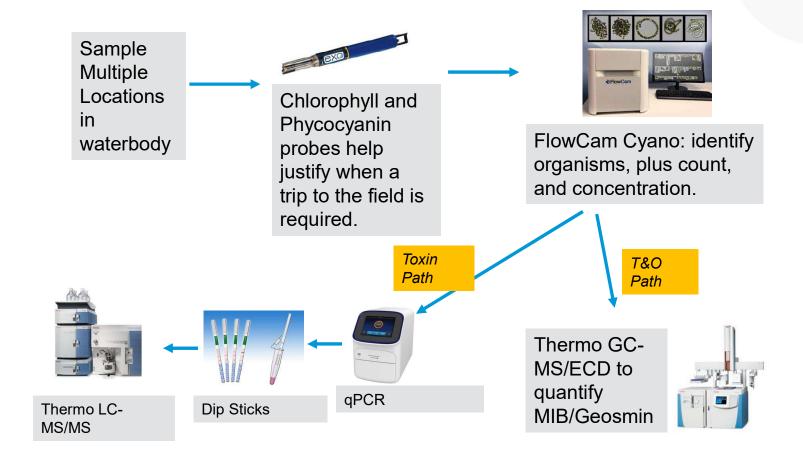
INVESTIGATING WATER TREATMENT PROCESSES FOR REMOVAL OF TASTE AND ODOUR COMPOUNDS: FOCUS ALGAE

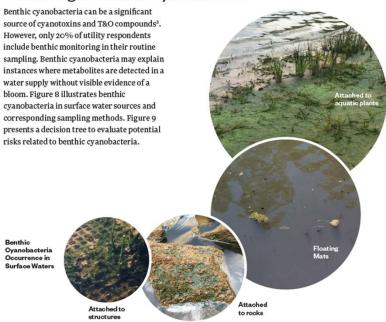




@ArashZamyadi International Water Association (IWA) Fellow






Cell Identification/Integrity & Release Intra- and extracellular compounds

ALGAL BLOOM AND T&O MONITORING PATHWAYS

Monitoring of Benthic Cyanobacteria

Sampling Method:

Deploying artificial substrates e.g., wood, PVC, and tile in reservoirs and allowing for biofilm development.

Scrapping biofilm from rooks or reservoir walls.

Collecting sediment core samples in the reservoir.

Raking the sediment.

Figure 8. Summary of benthic cyanobacteria sources and available sampling methods.

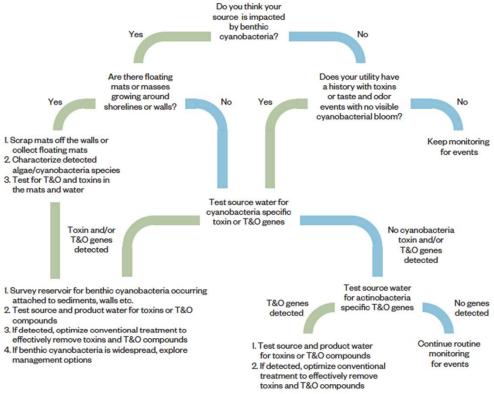
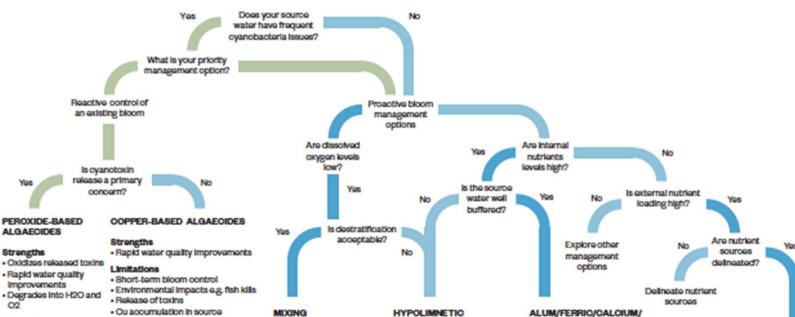



Figure 9. Decision tree on determining issues with benthic cyanobacteria at the drinking water source

Gaget et. al (2021) "Benthic cyanobacteria: a utilitycentered field study"; Under review

³ Gaget, V., Almuhtaram, H., Kibuye, F. A., Hobson, P., Zamyadi, A., Brookes, J.D., Trends in production of benthic secondary metabolites across different climates-In

Limitations

 Short-term bloom control

- Environmental impacts
- e.g., fish kills Application by professionals

Regulations

 State/federal permit requirements

Ou accumulation in source

Regulations

State/federal permit requirements

SOMECATION

Strengths

No treatment residuals

Limitations

- Limited field-scale success
- Limited process control options
- Impacted by source geometry
- May cause release of toxins
- Oost

Regulations

State/federal permit requirements

Strongths

- Increases DO
- Long term benefits

Umitations

- Resuspension of nutrients
- Impacted by source geometry
- May need continuous operation
- Cost
- Impacted by continued external loading

HYPOLIMNETIC OXYGENATION

Strengths

- Increases DO
- Long term benefits
- Control of Internal nutrients

Limitations

- Resuspension of nutrients
- Impacted by source geometry May need continuous
- operation
- Dependent on sediment composition e.g., Fe content
- Impacted by continued external loading
- Cost

ALUM/FERRIO/CALCIUM/ LANTHANUM TREATMENT

Strongths

- Long term benefits
- Nutrient and some algal control

Limitations

- Water quality dependence e.g., pH, rodox state, alkalinity
- ions accumulation in water and sediments
- Can be ineffective if external loading is not controlled

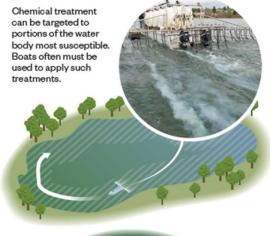
Regulations

 State/fodoral permit requirements

WATERSHED NUTRIENT CONTROL INITIATIVES

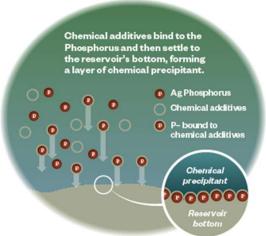
Strengths

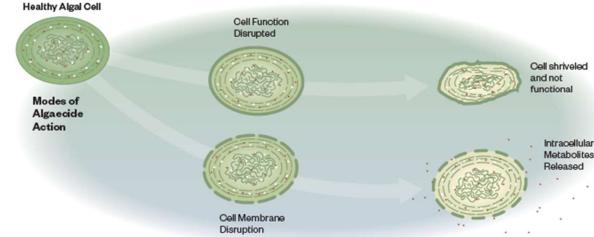
- Point sources easily managed
- Long term benefits


Umitations

- Challenges in non-point source control
- Delayed water quality
- Stakeholder Involvement and participation
- Cost

Table 2: Summary table of source water control strategies


Primary Considerations	ALGAECIDES		NUTRIENT SEQUESTRATION				Agration	Sonication	Distractoral Countries	
Primary Considerations	Hydrogen Peroxide Copper sulfate		Polyaluminium Chiloride Aluminium Sulfate		Iron	Modified Clay	Pan autoni	OURALDI	Biological Control	
Application										
Pelagic Zone (Le. water column)	Applicable	Applicable	Applicable	Applicable		Applicable	Applicable	Applicable	Applicable	
Benthic Zone (i.e. sediment surface)	Dependent on treatment method and type of chemical used	Dependent on treatment method and type of chemical used	Applicable	Applicable	Applicable	Not applicable	Not applicable	Applicable	Applicable	
Benefits										
Proactive Strategy	Not applicable	Not applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Not applicable	Applicable	
Reactive Strategy	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	
Nutrient Removal	Not applicable	Not applicable	Applicable	Applicable	Applicable	Applicable	Lowers release of reduced lons	Not applicable	Applicable for macrophytes	
Duration of Treatment Effect	7-30 days	14-60 days	4-20 yrs	4-20 yrs	Туг	2-0 yrs	Continous: based on operational characteristics	Continous based on operational oharacteristics	Continous: based on operational characteristics	
Short-Term Response	80-99% reduction of oyanobacteria	>90% reduction of oyanobacteria	97% reduction in total P	30% reduction in internal Ploading	Increased transparency; up to72% decilne in chicrophyll-a;	<85% reduction in total P	Increased DO levels at I mg/L/wk and reduced internal nutrient loading	30-90% reduction in cell counts	Increased water transparency; decreased chlorophyli-a and P	
Long-Term Response	≥75% for up to 60 days	≥75% for up to 60 days	80-95% reduction in Internal P loading	50-80% reduction in Internal P loading	50-80% reduction in internal Ploading	Upto 80% reduction in total P	Maintaining high DO levels for up to 23 yrs	Limited field- application success	Improvement in water quality conditions	
Limitations										
Treatment Residuals	None	Ou2+ residual in water column and sediments	Al3+ residual in sediments	Al3+ residual in sediments	Fe3+residual in water column and sediment	Release of trace metals, La3+ & NH4+ in water columns	None	None	None	
Cell Lysis/Metabolita Release	Dose-dependent release, Oxidizes released toxins	Dose Dependent	None	None		None	None	Can release toxins depnding on operational oharacteristics	None	
Background Interferences	None	pH sensitivity; sensitivity of oyanobacteria species to Ou; timing of treatment relative to growth stage	pH sensitivity; source water morphology and geometry; source mixing characteristics; continued external nutrient inputs	pH sensitivity; source water morphology and geometry; source mixing characteristics; continued external nutrient inputs	Rodox sonsitivity; continued external nutrient inputs;	pH sensitivity; source water morphology and geometry; source mixing characteristics; continued external nutrient inputs	Source water morphology and geometry; continued external nutrient inputs; sediment composition e.g. iron content of the sediment water interphase	Source water morphology and geometry	Water quality conditions; % macrophyte cover; continued external nutrient inputs; time for community establishment at the source	
Environmental impacts	Occassional fish kills depending on treatment dosage	Occassional fish kills depending on treatment dosage	Minimal impacts on aquatic organisms	Minimal impacts on aquatic organisms	High levels of Fe can negatively impacts aquatic organisms	Minimal impacts on aquatio organisms	May alter aquatio habitats due to impacts on hypolimnetio temperature;	Minimal impacts on aquatic organisms	None	
Acceptance Level										
Field Application History	5-15 years	>15 years	5-15 years	>15 years	>15 years	5-15 years	>15 years	5-15 years	5-15 years	
Poer Roviewed Literature	3-10 papers	>10 Papers	3-IO papers	3-10 papers	3-10 papers	3-10 papers	>10 Papers	3-10 papers	3-10 papers	
Ease of Implementation										
Permit Required (Le. State Dependent)	Yos	Yos	Yas	Yos	Yes	Yus	No	No	No	
Expertise and Training	Professionally applied	Professionally applied					No	No	No	
Process Control (i.e. Dose, Residuals)	mg/L H2O2	mg/L Ou or Ou8O4	mg/L Al or Al2Ol(OH)5	mg/L Al or Al2(8O4)3	kg/ha	kg/ha	Mixing rate/ Intensity	Sonication frequency (kHz); May rely on manufacturer to remotiey adjust operational parameters	#of fish removed/ added; % macrophyte cover; g of straw/ m3	



algaecides and nutrient sequestering chemicals frequently are applied by boat. Copper and peroxide-based algaecides damage cellular integrity and cause cell death (Figure 11), limiting bloom expansion in a drinking water source. Nutrient sequestering additives such as alum, polyaluminum chloride (PACI), iron salts, and bentonite clays bind P in the water column, creating nutrient limited conditions that inhibit cyanobacteria growth. A detailed review of chemical methods is available⁴.

Chemical treatment methods consist of

CHEMICAL CONTROL STRATEGIES

K.E. Greenstein, A. Zamyadi, C.M. Glover, C. Adams, E. Rosenfeldt, E.C. Wert (2020) Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria. Toxins, 12(5), 335.

A. Zamyadi, K. E. Greenstein, C. M. Glover, C. Adams, E. Rosenfeldt, E. C. Wert (2020) Impact of hydrogen peroxide and copper sulfate on the delayed release of microcystin. Water, 12(4).

Kibuye et. al (2021) "A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods"

Biomanipulation: Benefits & Factors to Consider

- · Has fewer ecological impacts when compared to chemical control methods.
- Treatment can be impacted by continued external nutrient inputs.

may occur from modification of biodiversity

- · Internal nutrient loading should be controlled.
- · Insufficient fish removal or addition can impact treatment.
- · Extent of macrophyte cover and stability can influence overall
- · Macrophyte control may not be effective in eutrophic turbid sources as cyanobacteria will have competitive advantage.
- · Macrophyte establishment impacted by source characteristics e.g., depth, size, and bed slopes.

cyanobacteria control

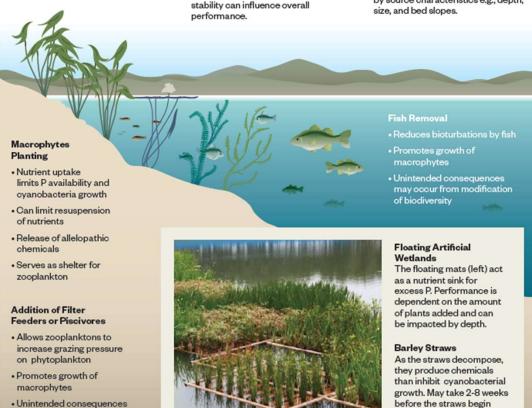


Figure 13. Summary of biological control methods and factors to consider for implementation.

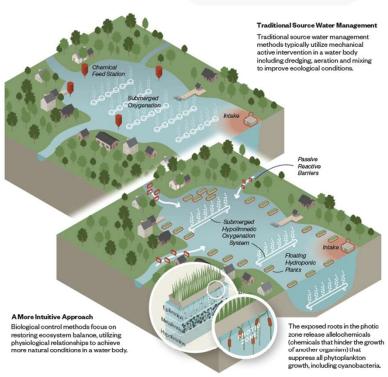


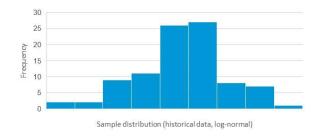
Figure 12. Summary of mechanical control methods and factors to consider/influencing treatment efficacy

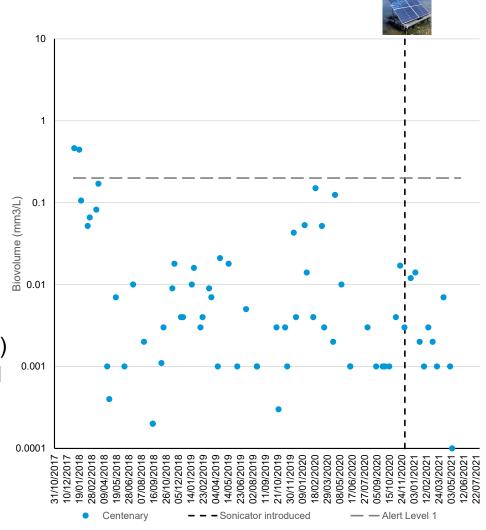
Kibuye et. al (2021) "A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods"; ACCEPTED!

Protocols for algal bloom management Source mitigation using sonication

Trial package for Intelligent Water Network (IWN) & Veolia:

- Trialling of non-chemical dosing for cyanobacteria mitigation at the source
- Developed the sampling protocol to collect systematic algal and cyanobacterial, and water quality data
- Sonication equipment was installed Dec 2020
- Data analyse and interpretation is ongoing

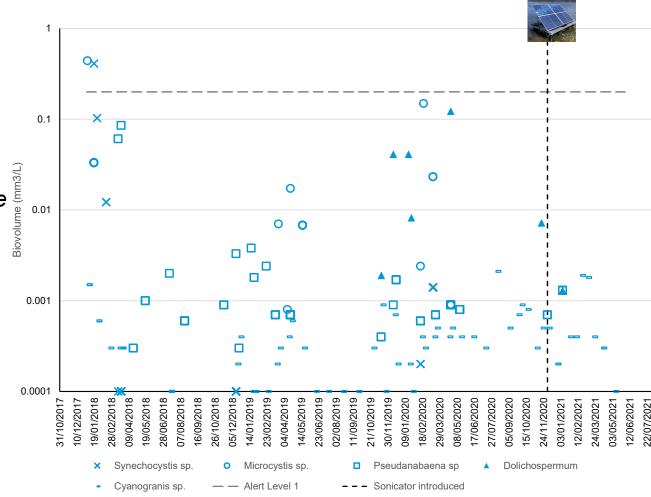



Protocols for algal bloom management

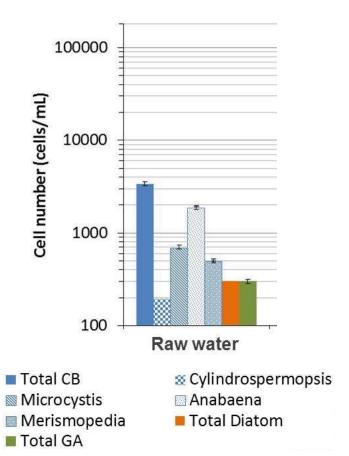
Source mitigation using sonication

Total Cyanobacteria Biovolumes – Statistical Observations

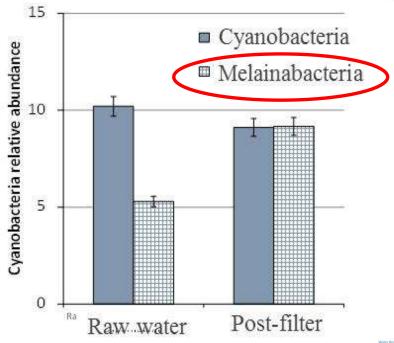
- Preliminary analysis (Log-normal distribution)
 - Practicality of controls?
 - Data from only 1 bloom season
 - Testing is lower during non-bloom periods
- Centenary Reservoir Walkway
 - Historical distribution (n=56) compared to post-sonicator distribution (n=10)
 - Statistically significant difference observed
- Water treatment plant intake stream
 - Historical (n=94) and post-sonicator (n=20)
 - Statistically significant difference observed



Protocols for algal bloom management **Source mitigation using sonication**

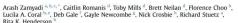

Dominant Cyanobacteria Species Biovolumes – Centenary Reservoir

- Disruptions in dominant species observed after sonicator installation
- Microcystis sp. undetected in 2020/2021 bloom season
- Cyanogranis sp. and Anathece sp. dominant in recent blooms

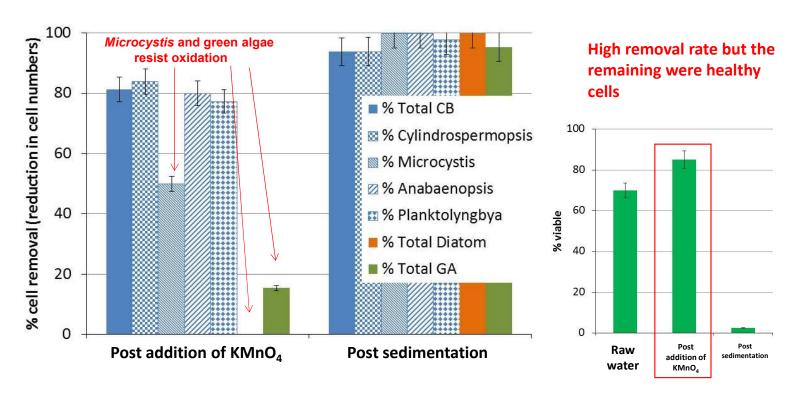


TREATMENT ISSUES/UNKNOWNS?

Identified organisms using macroscopic taxonomy

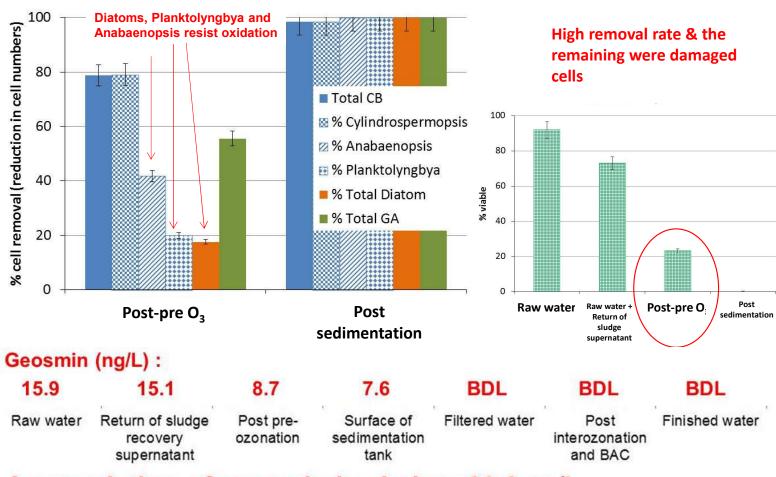

Extra info obtained by genomics

Water Research 152 (2019) 96-105


Diagnosing water treatment critical control points for cyanobacterial removal: Exploring benefits of combined microscopy, next-generation sequencing, and cell integrity methods

Sampling results: Pre-oxidation using pre-KMnO₄:

% cell removal & total MIB

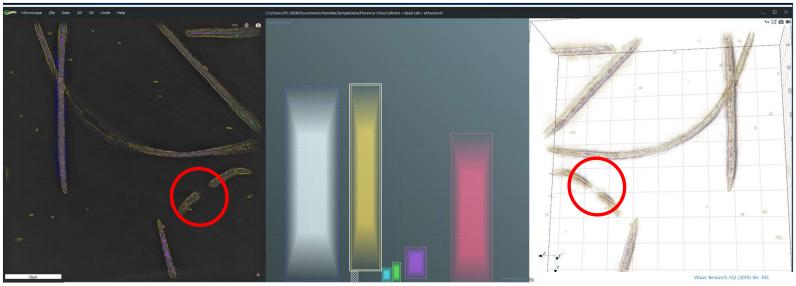


Raw water Raw water + Surface of Filtered water Finished water KMnO4 sedimentation tank

MIB (ng/L): 12.6 12.9 6.6 6.4 6.8

Sampling results: Pre-oxidation using pre-O₃

% cell removal & total geosmin



Accumulation of geosmin in sludge: 20.6 ng/L

OXIDATION – UNKNOWNS?

Understand the phenomena governing cell wall damage & release of intracellular metabolites during oxidation:

Fate of Cylindrospermopsis cells post ozonation

Flowcytometry confirmed complete cells damaged but not at the same level!

Diagnosing water treatment critical control points for cyanobacterial removal: Exploring benefits of combined microscopy, next-generation sequencing, and cell integrity methods

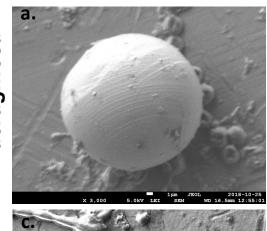
Arash Zamyadi a, b, c, a, Caitlin Romanis d, Toby Mills d, Brett Neilan d, Florence Choo b, Lucila A. Coral b, e, Deb Gale f, Gayle Newcombe g, Nick Crosbie h, Richard Stuetz a, Rita K. Henderson

Understanding oxidation:

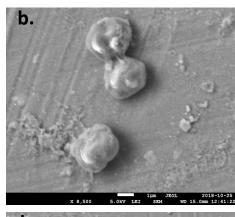
Understand the phenomena governing oxidation of cells, biomarker indicating toxin production, triggers of toxicity, release of intracellular metabolites

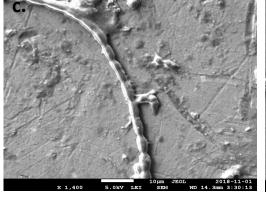
Chlorination for maximum dose-contact time (CT) 120 mg.min/L and ozonation for maximum dose-contact time (CT) 50 mg.min/L

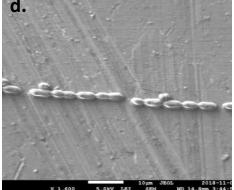
Pre-oxidation


Open Access Article

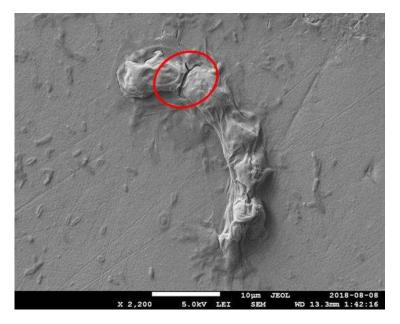
Using Advanced Spectroscopy and Organic Matter Characterization to Evaluate the Impact of Oxidation on Cyanobacteria

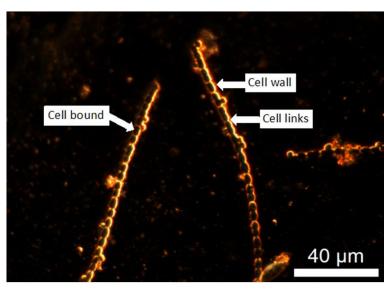

Saber Moradinejad 1 $\stackrel{\square}{\hookrightarrow}$, Caitlin M. Glover 1 $\stackrel{\square}{\hookrightarrow}$, Jacinthe Mailly 1 $\stackrel{\square}{\hookrightarrow}$, Tahere Zadfathollah Seighalani 1 $\stackrel{\square}{\hookrightarrow}$, Sigrid Peldszus 2 $\stackrel{\square}{\hookrightarrow}$, Benoit Barbeau 1 $\stackrel{\square}{\hookrightarrow}$ 0, Sarah Dorner 1 $\stackrel{\square}{\hookrightarrow}$, Michèle Prévost 1 $\stackrel{\square}{\hookrightarrow}$ and Arash Zamyadi 1,* $\stackrel{\square}{\hookrightarrow}$



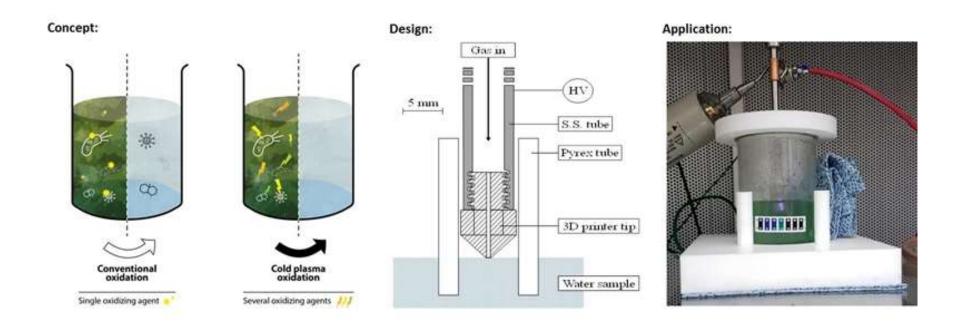

Anabaena flosaquae

Post-oxidation





Understanding oxidation:

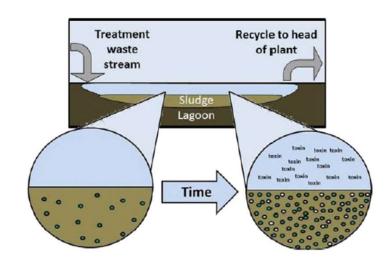

Enhanced Darkfield Microscopy with Hyperspectral Imaging (EDM/HSI) allows for spectra (400–1000 nm) to be generated from a specific pixel (containing a cell component of interest)

What if we oxidize them all together:

B. Nisol, S. Watson, Y. Leblanc, S. Moradinejad, M. R. Wertheimer, A. Zamyadi (2019) Cold plasma oxidation of harmful algae and associated metabolite BMAA toxin in aqueous suspension. Plasma Processes and Polymers, 16(2). https://doi.org/10.1002/ppap.201800137S

CYANOTOXIN OXIDATION

WRF4692 - #WRFCyanoToxinOxid:


Release of Intracellular Cyanotoxins During Oxidation of Naturally Occurring and Lab Cultured Cyanobacteria

Oxidant	Microcystins	Microcystin- LA	Cylindrospermopsin	Anatoxin A	Saxitoxins	GTX2, GTX3 and C1, C2	Nodularin	MIB and geosmin	ВМАА
Free chlorine	рН		рН	Slow/no oxidation			рН		рН
Monochloramine	Slow/no oxidation					?			?
Chlorine dioxide	Slow/no oxidation					?	?		?
Permanganate						?	?	?	Slow
Ozone			рН	рН					рН
Hydroxyl radical					?	?			рН
UV	High doses	High doses	High doses	High doses	?	?	?	High doses	High doses
Cold plasma oxidation*	LR and LL	?	?	?	?	?	?	?	

^{*}Treatment technology currently at bench-scale.

FATE OF CELLS?

Cell accumulation in sludge?

Source: Water Research Foundation 4315 & 4523

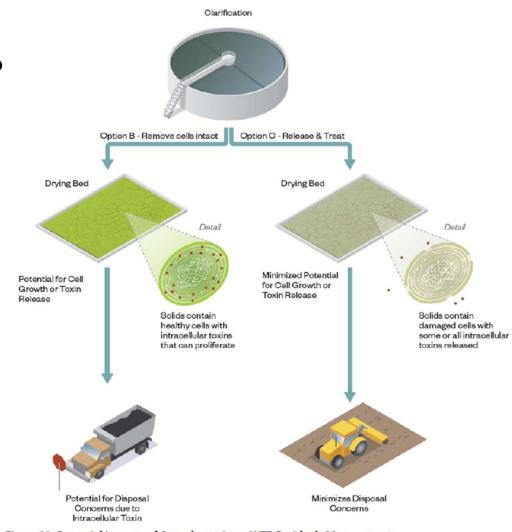
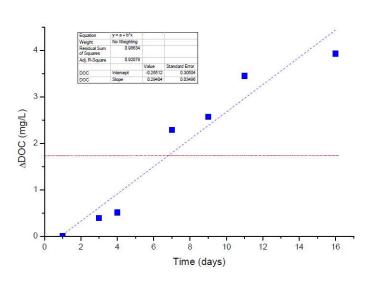
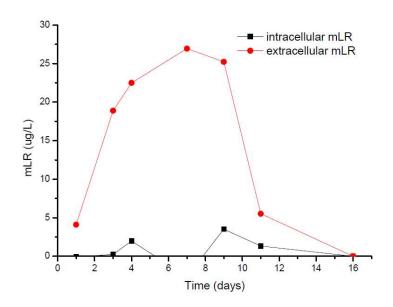
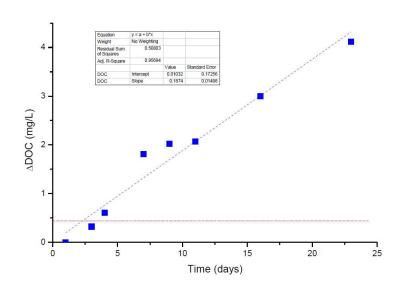
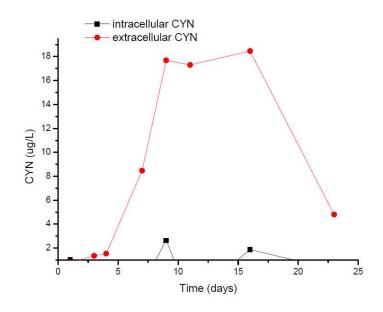




Figure 11. Potential Impacts of Cyanobacteria on WTP Residuals Management

Fate of cells and metabolites after coagulation in sludge:

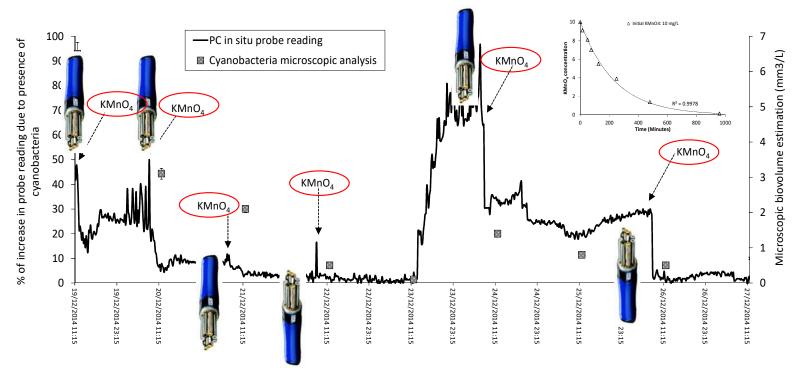

RESULTS: INCREASE OF DOC CONCENTRATION WITH TIME; MYPONGA WATER AND CULTURED *M. AERUGINOSA*. RED DOTTED LINE REPRESENTS MAXIMUM EXPECTED INCREASE FROM CELL LYSIS ALONE.


Results: Concentration of MC-LR as a function of time in days; Myponga water and cultured *M. aeruginosa*.

Similar results for MC-LA.

Fate of cells and metabolites after coagulation in sludge:

RESULTS: INCREASE OF DOC CONCENTRATION WITH TIME; MYPONGA WATER AND CULTURED C. RACIBORSKII. RED DOTTED LINE REPRESENTS MAXIMUM EXPECTED INCREASE FROM CELL LYSIS ALONE..

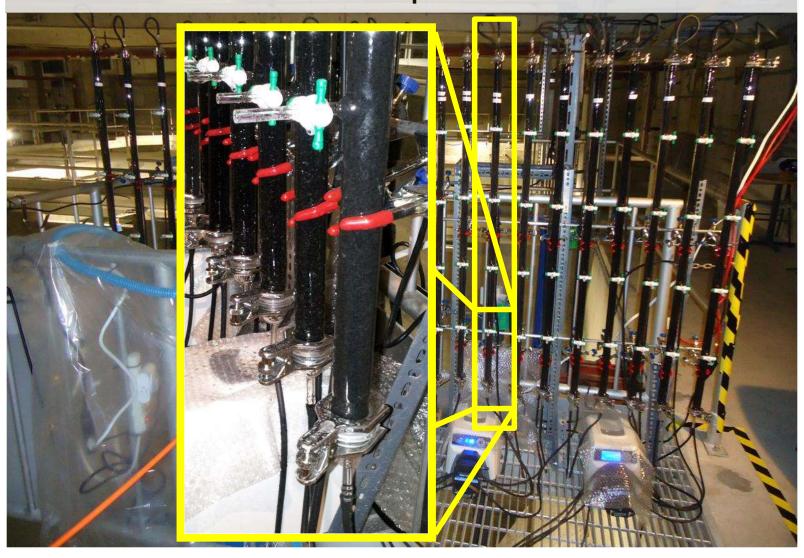


Results: Concentration of cylindrospermopsin (CYN) as a function of time in days; Myponga water and cultured *C. raciborskii*.

Single point use: Cyanobacterial cell accumulation in the sludge;

Example of treatment adjustment used by Melbourne Water:

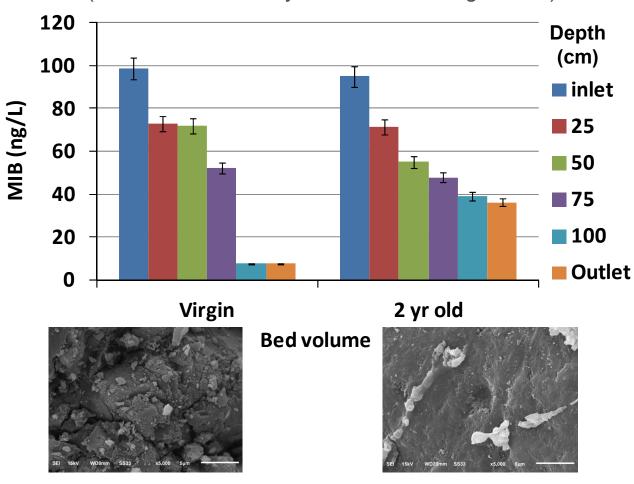
Application of GAC for removal


22 column pilot setup - Lorne Park WTP - Ontario

Assessing the remaining service life of full-scale GAC for H₂O₂ quenching and T&O compound removal


22 Column Pilot Set-up at Lorne Park WTP

Application of GAC for removal

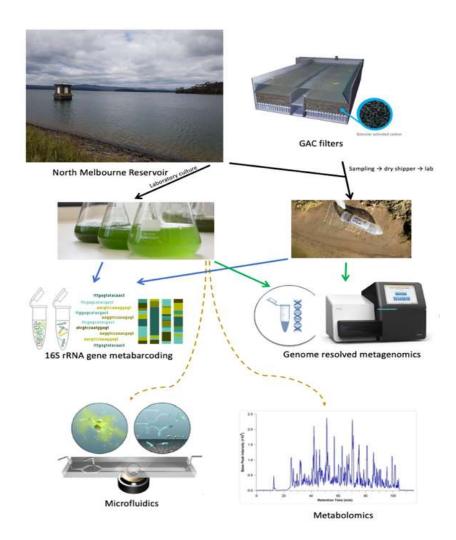

Colum preparation: GAC sampling from the full-scale contactors

Application of GAC for removal MIB

MIB removal using full-scale & virgin centaur GAC (similar results for 1 year old GAC and geosmin)

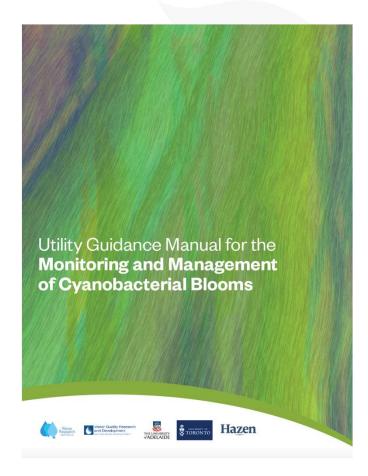
Application of GAC for removal geosmin

Geosmin Removal Using Full-scale & Virgin Centaur GAC


Ongoing work: Understating BAC

Assessment package for Melbourne Water:

- Identity potential functions of cyanobacteria in the reservoir, as well as the BAC biofilm communities with focus on stagnation
 - PhD student at University of Melbourne funded by an ARC Discovery Gant
 - Supervisors: Linda Blackall, Dug Romney, Arash Zamyadi (Melbourne), Jillian Banfield (University of California Berkeley)


WATER RESEARCH FOUNDATION (#4912)

 "Developing Guidance for Assessment and Evaluation of Harmful Algal Blooms, and Implementation of Control Strategies in Source Water"

Project Team

- SNWA Faith Kibuye, Eric Wert (PI)
- Water Research Australia

 Arash Zamyadi (coPI)
- University of Adelaide Virginie Gaget (coPI)
- Hazen Christine Owen (coPI)
- University of Toronto Ron Hofmann, Husein Almuhtaram
- https://www.waterrf.org/research/projects/developing-guidance-evaluation-and-implementation-control-habs-source-water
- https://www.waterra.com.au/research/communities-ofinterest/algal-innovation/

Dr Arash Zamyadi

WaterRA Research Manager (hosted by Melbourne Water) & Senior Lecturer

Chemical Engineering | Faculty of Engineering and Information Technology The University of Melbourne, Victoria 3010 Australia

T: +61 4 3773 1414 E: arash.zamyadi@unimelb.edu.au / arash.zamyadi@waterra.com.au

https://findanexpert.unimelb.edu.au/profile/862353-arash-zamyadi

