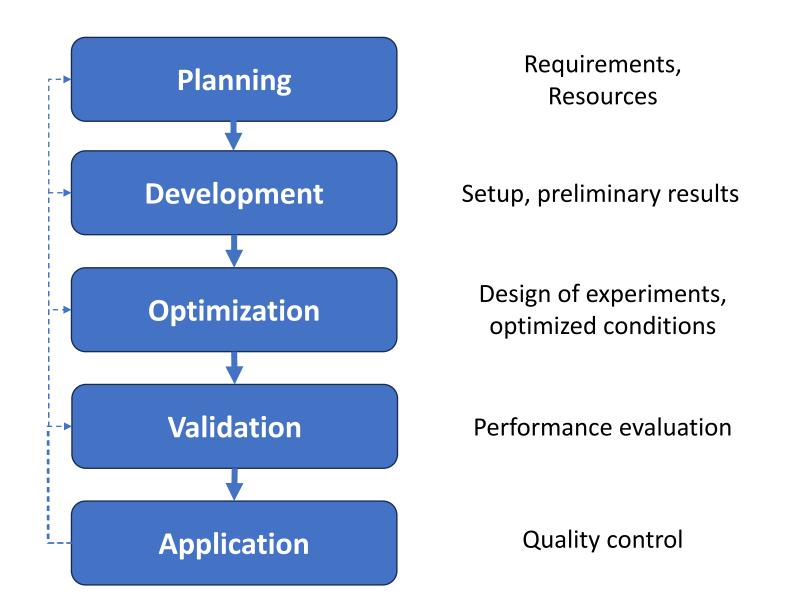
Validation of HS-SPME-GC-MS/MS methods for water T&O

Tri Kaloudis

Laboratory of Organic Micropollutants, Water Quality Dept., EYDAP SA, Greece Institute of Nanoscience & Nanotechnology, NCSR Demokritos, Greece

WaterTOP Training School "Microextraction in T&O analysis: fundamentals and applications TUC, Chania, Greece, 20-22/09/2023



Analytical methods: from planning to application

Planning: requirements of water T&O analytical methods

Consumer requirements (EU DWD, National Water Authorities):

- Method can detect/quantify T&O below the Odor Threshold Concentration (OTC).
- Reasonable accuracy and precision (e.g., <25% RSD and bias).
- Reasonable measurement uncertainty (e.g., <50% Uexp).

Laboratory requirements:

- Simple procedure.
- Low level of analytical skills-expertise.
- Low equipment and operational costs.
- Fast.
- High throughput.

Method development example: SPME-GC-MS for geosmin & MIB

- Sample volume 10ml (20ml SPME vials)
- NaCl (salting out)
- HS-SPME (50/30 μm DVB/CAR/PDMS, Stableflex)
- Automated SPME (CombiPAL)
- GC-MS and GC-MS/MS alternatives
- Non-polar and semi-polar columns.
- Run-time 35min including SPME (time-saver).

Extraction temperature	60 °C
Equilibration time	10 min
Extraction time	10 min
Agitation	300 rpm
Fiber position	10mm, "fiber depth
	from bottom"

EUROPEAN STANDARD EN ISO 17943

NORME EUROPÉENNE

EUROPÄISCHE NORM

April 2016

ICS 13.060.50

English Version

Water quality - Determination of volatile organic compounds in water - Method using headspace solid-phase micro-extraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) (ISO 17943:2016)

Based on EN ISO 17093, modified (GC-MS/MS)

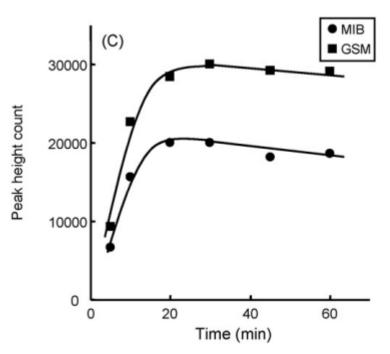
Example SPME conditions

Method development example: SPME-GC-MS for geosmin & MIB

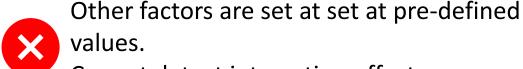
Parameter	Setting
Injection	Spitless (2 min), 1µl
Desorption temp.	250 °C (injector temp)
Fiber cleaning	In injector, split, 2-10min
Column flow	Constant flow, 1 mL/min He
Col. oven equil. time	5 min
Temp. gradient	50 °C (hold 1 min) \rightarrow 250 °C- 15
	°C/min (hold 6 min) Total 19.33min

Example GC conditions

Compound	Retention	Precursor	Product ion	CE (collision
	time (min)	ion (m/z)	(m/z)	energy-ev)
Geosmin	9.81	95	67*	10.0
		95	55	10.0
		95	93	10.0
MIB	7.64	112	97*	10.0
		112	69	10.0
		112	83	10.0
	*Quantitation	ion		

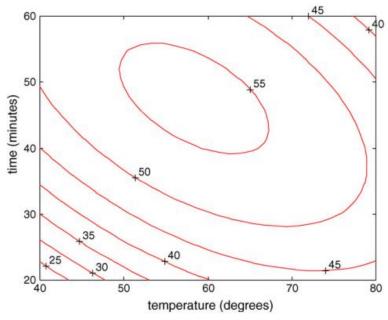

SPME optimization

SPME parameters may need to be optimized, e.g., equilibration/extraction temperature/time, NaCl, agitation etc.


- Define the "Response" to be optimized, e.g., peak area, peak height, recovery, reproducibility etc...
- 2. Define the "Factors" (parameters) to be studied.
- 3. Evaluate the **effects** of factors on the response.
- 4. Identify **significant** factors.
- 5. Develop a model that predicts the response from significant factors.
- 6. Determine the values of significant factors for **optimal** response.
- **7. Verify** the optimum conditions.

Optimization strategies

One factor at a time (OFAT)



Saito et al., J. Chromat. A., 2008

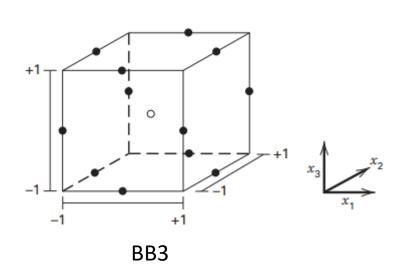
Cannot detect interaction effects. Large number of experiments.

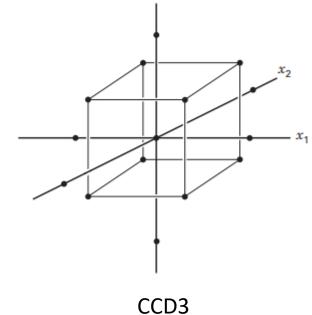
Design of Experiments (DoE)

Leardi et al., Analytica Chimica Acta 2009

DoE: "A branch of applied statistics that deals with planning, conducting, analyzing, and interpreting controlled tests to evaluate the factors that control the value of a parameter or group of parameters." *ASQ*

Models the whole experimental domain.


Can detect interaction effects.

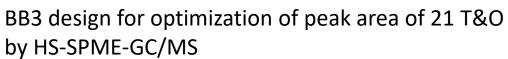

Small number of experiments.

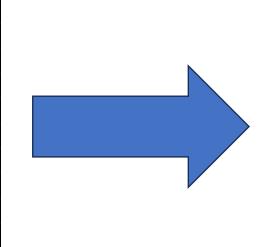
Response surface designs: BB and CCD

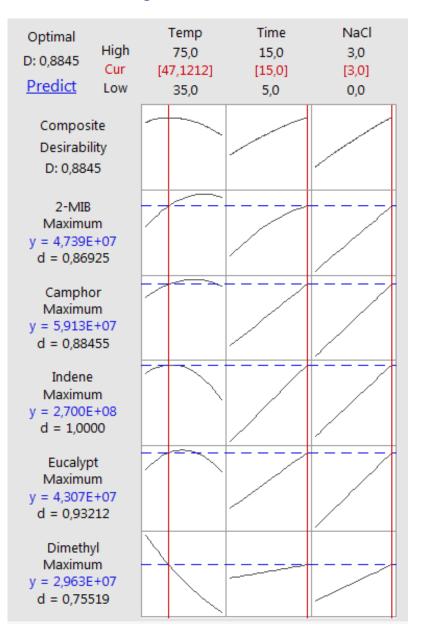
A Three-Variable Box-Behnken Design

Run	x_1	x_2	x_3
1	-1	-1	0
2	-1	1	0
3	1	-1	0
4	1	1	0
5	-1	0	-1
6	-1	0	1
7	1	0	-1
8	1	0	1
9	0	-1	-1
10	0	-1	1
11	0	1	-1
12	0	1	1
13	0	0	0
14	0	0	0
15	0	0	0

ļ	Available Respons	se Surf	ace D	esign	S						
Design	Donieus.			Continuous Factors							
Design		2	3	4	5	6	7	8	9	10	
Control composite full	unblocked	13	20	31	52	90	152				
Central composite full	blocked	14	20	30	54	90	160				
Control community half	unblocked				32	53	88	154			
Central composite half	blocked				33	54	90	160			
Control comments and the	unblocked							90	156		
Central composite quarter	blocked							90	160		
Control composite sighth	unblocked									158	
Central composite eighth	blocked									160	
Box-Behnken	unblocked		15	27	46	54	62		130	170	
Dox-bennken	blocked			27	46	54	62		130	170	


Example of a 3 factor BB design


Montgomery, Design and analysis of experiments 9th Ed. 2017


BB and CCD designs (Minitab)

Multiple response optimization based on desirability functions

	Run		Extr. Temp.	Extr. Time	NaCl
Std Order	Order	PtType	(°C)	(min)	g/10ml
8	1	2	75	10	3
10	2	2	55	15	0
11	3	2	55	5	3
15	4	0	55	10	1,5
1	5	2	35	5	1,5
4	6	2	75	15	1,5
2	7	2	75	5	1,5
3	8	2	35	15	1,5
14	9	0	55	10	1,5
5	10	2	35	10	0
12	11	2	55	15	3
9	12	2	55	5	0
13	13	0	55	10	1,5
7	14	2	35	10	3
6	15	2	75	10	0

Validation

Validation: provision of objective evidence that a given item fulfils **specified requirements**, where the specified requirements are adequate for an **intended use** (VIM 3).

Specified requirements: Customers, end-users, guidelines, regulations.

Example of specified requirements for the determination of geosmin

Performance parameter	Expressed as	Requirement
Precision	%RSD _r %RSD _R	<25 <25
Accuracy	% mean recovery	75-125
LOQ	Minimum validated level (ng/L)	<3 ng/L
LOD	LOD, S/N>3 (RMS)	<3 ng/L
Uncertainty	Uexp, k=2	<50%
Validation levels: LOQ, 1	Ong/L	

Day: 2 3 **Thanos** ID Alina Tri 1 ng/L 1A 1 ng/L 1 ng/L 1 ng/L 1 ng/L 1 ng/L 2A 3A 1 ng/L 1 ng/L 1 ng/L 1 ng/L 1 ng/L 1 ng/L 4A 5A 1 ng/L 1 ng/L 1 ng/L 1 ng/L 1 ng/L 1 ng/L 6A 10 ng/L 10 ng/L 1B 10 ng/L 10 ng/L 10 ng/L 10 ng/L 2B 10 ng/L 10 ng/L 3B 10 ng/L 10 ng/L 10 ng/L 10 ng/L 4B 10 ng/L 10 ng/L 10 ng/L 5B 10 ng/L 6B 10 ng/L 10 ng/L

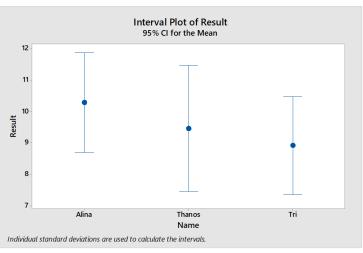
Validation plan (protocol)

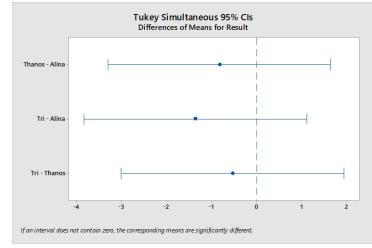
Determination of geosmin (HS-SPME-GC-MS/MS)

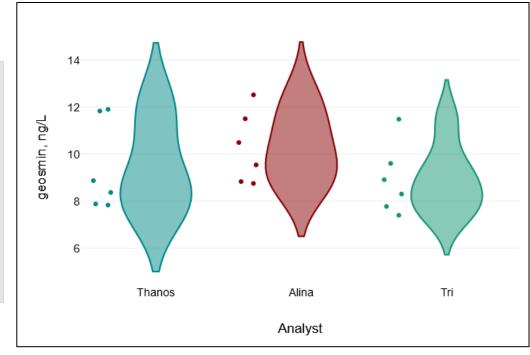
- Samples: Bottled water, e.g., Zagori LOT number xxxxx
- Spike with geosmin CRM 10 μg/L, LOT number xxxx
- Validation levels: 1ng/L (A) and 10ng/L (B)
- Use the Lab's Standard Operating Procedure

Estimates per spike level:

- %RSDr : Within-day precision (repeatability, pooled estimate)
- %RSD_R: Overall precision (all days)
- % mean Recovery: all days
- LOQ/LOD, needed (<1 ng/L): Repeat at LOQ/LOD level.

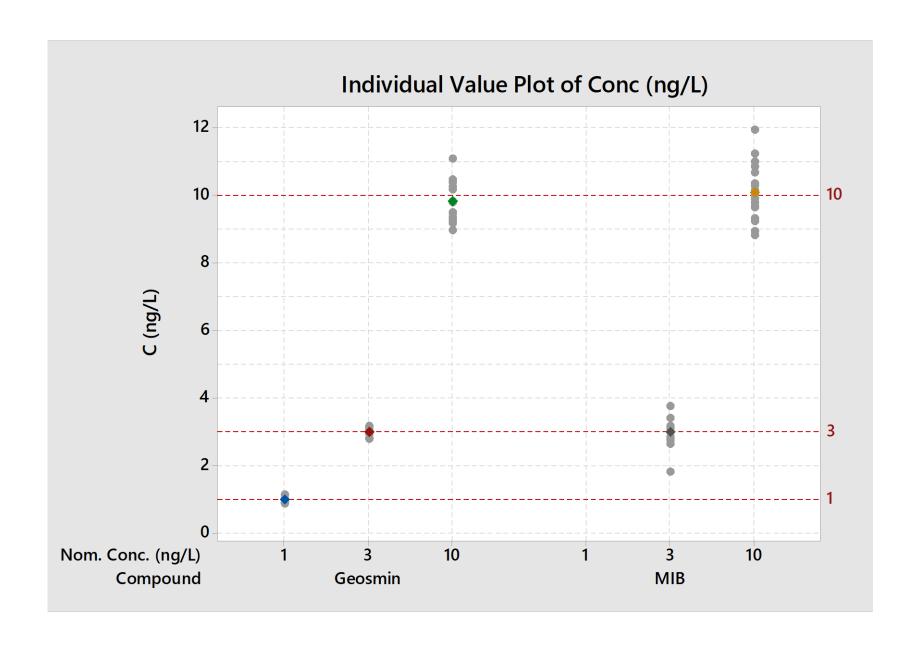

All raw and processed data should be kept in records and be traceable.


Interpretation of results


Spike lev	rel = 10n	ıg/L	ı								
Variable	Name	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Result	Alina	6	0	10.282	0.619	1.517	8.764	8.823	10.025	11.764	12.525
	Thanos	6	0	9.458	0.780	1.909	7.844	7.880	8.631	11.857	11.910
	Tri	6	0	8.923	0.606	1.485	7.411	7.693	8.616	10.083	11.491

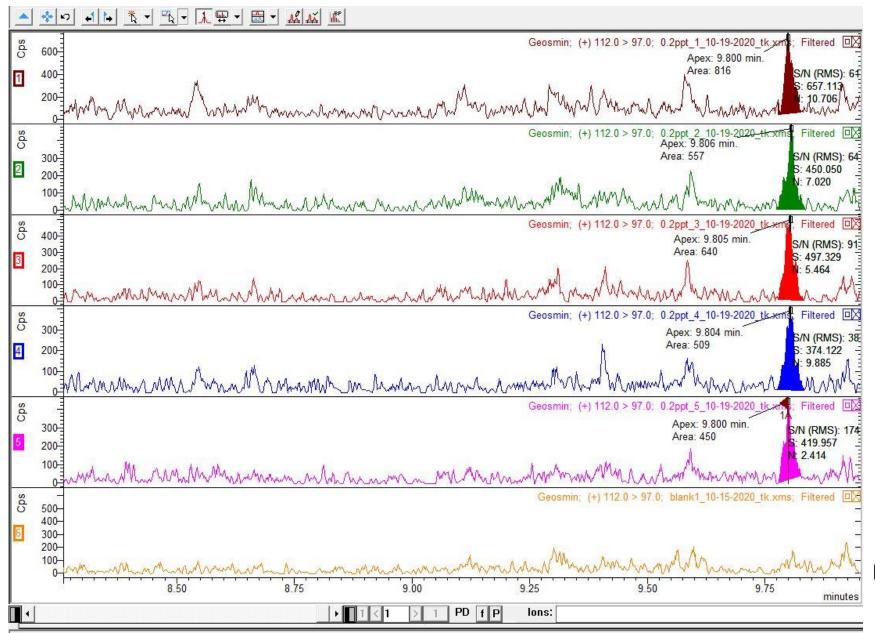
Simulated data

Question: Is Tri an outlier?



Visualize data. Check for statistical significance.

Data visualization – individual values


Data visualization – % recovery boxplots

Summary of validation results

	Conc. Level		Mean	Mean		
Compound	(ng/L)	N	(ng/L)	%Rec.	%RSD _R	%RSDr
Geosmin	0.5	6*	0.554	110.9	_	5.75
Geosmin	1.0	6*	0.978	97.8	_	9.09
Geosmin	3.0	12	2.979	99.3	4.72	3.65
Geosmin	10	18	9.794	97.9	6.01	4.23
MIB	3	12	2.979	99.3	16.45	17.15
MIB	10	18	10.079	100.8	8.12	8.27
		Spe	ecifications	75-125	<25	<25
				/	/	

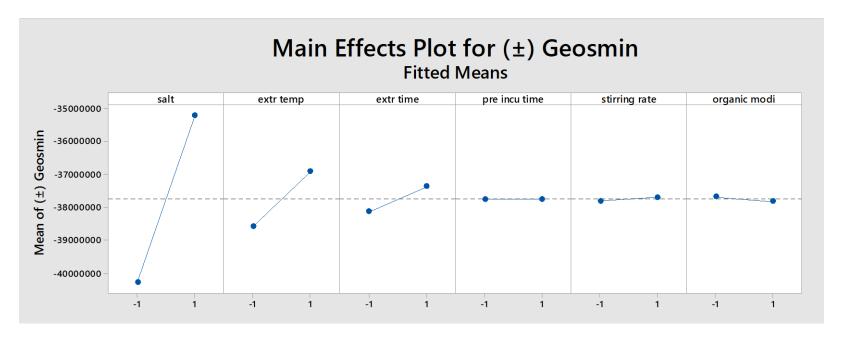
Limit of Detection

- Replicates of samples spiked with 0.2 ng/L geosmin.
- MS/MS method (m/z 112->97).
- Visible peak.
- S/N>3 (but S/N not a good metric in MS/MS).

LOD depends on instrument condition.

LOQ is always more important than LOD.

Blank sample


Robustness

The capacity of an analytical procedure to produce unbiased results when small changes in the experimental conditions occur.

Especially important for manual SPME, where e.g., temperatures and times may vary from the target settings.

DoE to evaluate effects of factors which are not precisely controlled.

- Significant effects: Take measures to control these factors.
- Non-significant effects: Methods is robust in the range studied.

Example: Effects of various factors on peak area of geosmin, Pluckett-Burman screening DoE.

Example of analytical sequence.

Run	Sample
1	Blank 1
2	Blank 2
3	Calibration 1
4	Calibration 2
5	QC 1
6	Sample 1
7	Sample 2
8	Sample 3
•••••	•••••
15	Sample 10
16	Calibration 3
17	QC 2
13	Sample 11

Routine application

- Initial blanks to clean the fiber, no impurities.
- Bracketing calibration samples every 10 samples at max.
- QC samples every 10 samples at max.
- End of sequence with calibration, QC and blank.
- Blank, QC and calibration samples are in bottled water matrix.

Certified Reference Materials

Certificate of Analysis

(+/-)-GEOSMIN,1X1ML,100UG/ML,MEOH

Certified Reference Material

Description

Product ID CRM47522 Lot LRAB9720 Expiration Date August 2021 Manufacturing Date August 2018 Storage Conditions Room Temperature Solvent/Matrix METHANOL

Certified Values

Analyte	Units	Certified ^{1,4} Value	Raw Material Purity,%	Analytical ⁶ Elut Value ora		CAS
Geosmin	μg/ml	100.0 ± 1.8	98.25	94.5	2 BCBS9505V/ DSL5567	16423-19-1
x10.2 45 TIC SM UNA88720 1-1.0						

Additional Information:

Analytical Method Parameters:

Column: SLB-5MS, 30 m x 0.25 mm x 0.25 µm df , Flow: 1.0 ml/min

Inlet: 240 oC, Split Ratio: 15:1

70 oC (2 min) to 260 oC (3 min) at 30 oC/min

Detector: MSD-SIM mode, Tx line: 260 oC, Q: 150 oC

Injection Volume: 1.0 µl

Description

Lot LRAB9720 Expiration Date August 2021 Manufacturing Date August 2018 Storage Conditions Room Temperature Solvent/Matrix METHANOL

1 Metrological traceability: Traceable to the SI and higher order standards from NIST through an unbroken chain of comparisons. The balance used to weigh raw materials is accurate to +/-0.0001 g and reschooling to the control of the co

$$u_{CRM} = \sqrt{u_{cher}^2 + u_{hom coencils}^2 + u_{stability}^2}$$

k: Coverage factor derived from a t-distribution table, based on the degrees of freedom of the data set. Assume 2.0 for a Confidence interval = 95%

6 Analytical Value- For QC verification of the certified value only- not to be used in calculations. Represents the analytical data obtained by comparison to a standard as analyzed by the method described in the

Traceability: The standard was manufactured under an ISO/IEC 17025:2017 certified quality system. The balance used to weigh raw materials is accurate to +/- 0.0001g and calibrated regularly using mass standards traceable to NIST. All dilutions were preformed gravimetrically. Additionally, individual analytes are traceable to NIST SRMs where available and

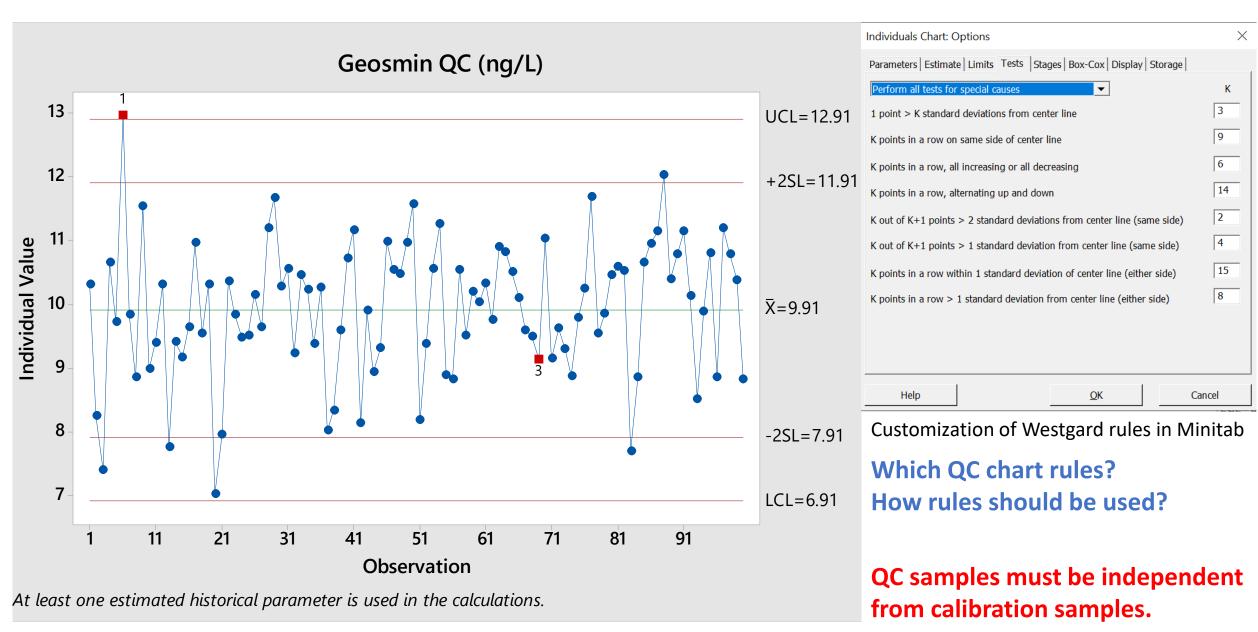
Homogeneity: Homogeneity was assessed in accordance with ISO 17034:2016. Completed units were sampled using a random stratified sampling protocol. The results of chemical analysis were then compared using a one-way analysis of variance approach as described by TNI EL-V3-2009 Appendix A.2. See Instructions for minimum sub-sample size.

Expiration is at end of month given on certificate and label.

THIS PRODUCT WAS DESIGNED, PRODUCED AND VERIFIED FOR ACCURACY AND STABLITY IN ACCORDANCE WITH ISO/IEC 17025-2917 JA NAS Carl AT-14457] and ISO 17034 2016 JANAS Cert AR-1470).

Andy Ommen - QC Manager

mon ler


Mark Pooler - QA Supervisor

March 13, 2020 Certification Date

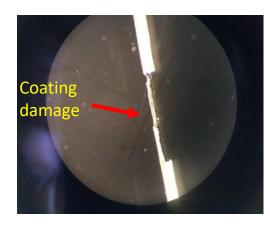
Example Certificate. We do not endorse any commercial products.

Quality control

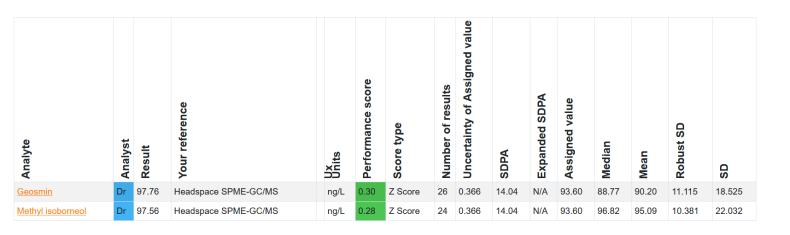
Simulated data

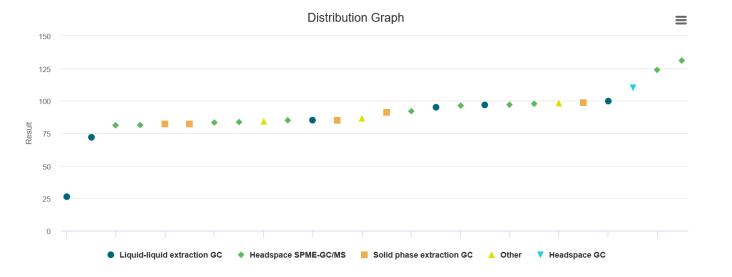
Mistake-proofing (poka-yoke)

Suction piston graduated pipettes, glass (sub-sampling)


Single-use clear glass SPME vials, Teflon liner.

Merlin Microseal "duckbill" valve.


Amber glass vials, 100ml, ground glass stoper (100ml), for sampling.



SPME fiber inspection

- No storage of solvents or standard solutions in GC-MS room.
- Pre-baking of NaCl.
- Separate room for preparation of calibration and QC samples.
- Preventive maintenance.

Proficiency Testing Schemes

When available, use PT schemes which are accredited by ISO ISO/IEC 17043.

Search for PT schemes in https://www.eptis.org/

Evaluate your results. Usually,

$$Z - score = \left[\frac{x_i - x_a}{\sigma_{\text{PT}}}\right] < 2$$

PT schemes for untargeted detection of T&O in water are also available.

Uncertainty of measurement

Measurement uncertainty: non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used. [JCGM 200:2008 (VIM) 2.26]

JCGM 104:2009

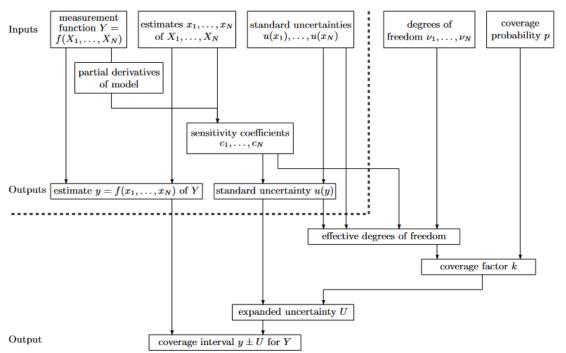


Figure 7 — Measurement uncertainty evaluation using the GUM uncertainty framework, where the top-left part of the figure (bounded by broken lines) relates to obtaining an estimate y of the output quantity Y and the associated standard uncertainty u(y), and the remainder relates to the determination of a coverage interval for Y

https://www.bipm.org/en/committees/jc/jcgm/publications

Uncertainty of measurement – The Nordtest approach

Standard uncertainty (u_c) is estimated from two contributions:

1. Within-laboratory reproducibility, e.g., from QC samples:

$$u(Rw) = s_{Rw}$$

2. Method and laboratory bias:

$$u(c_{recovery}) = \sqrt{u_{conc}^2 + u_{vol}^2},$$

where u_{conc} is the uncertainty of the CRM concentration (in the certificate) and u_{vol} is the uncertainty of the volume of spiked standard (from pipette calibration certificate.

$$RMS_{bias} = \sqrt{\frac{\sum_{i=1}^{N} (100\% - recovery_i)^2}{N}} \text{ and } u_{(bias)} = \sqrt{RMS_{bias}^2 + u(c_{recovery})^2}$$

$$u_c = \sqrt{u(Rw)^2 + u_{(bias)}^2}$$

Expanded uncertainty, 95% confidence (k=2): $Uexp = 2 \cdot u_c$

Estimating uncertainty with MUkit

MEASUREMENT UNCERTAINTY ESTIMATION

Step	Action	Geosmin				9/17/202	3				
		Managurand: C	Measurand: Concentration								
1	Specify	Concentration range: 1 - 10 ng/l Sample Type (Matrix): Potable water									
1	Measurand	Analysis Princ				C-MS/MS					
		Sample prepa				C 113,113					
\vdash	Quantify		and the best and the state of t								
	within-	Control sam	ples:								
	laboratory reproducibility,	Sample Type		Potable bott	ded water 2	Zagori					
	reproducionity,	Period of mea	surements	: 9/23/202	0 - 10/6/2	020					
	$u(R_w)$	Number of co	ntrol samp	les: 15							
2		Average conc	entration:	9.111 ng/l							
	Control sample that	Standard dev	iation, SRM	: 0.49 %							
	covers all the										
	steps in the	$u(R_w) = s_{R_0}$	= 0.49 %	6							
	analytical process										
		Method and	laborator	v bias fro	m recover	v tests:					
		Standard solu		-		,					
		Standard unc				centration	u(conc).	1.00 %			
		Standard unc									
					olution volu	ime, "("	*7:0.76%	•			
		Recovery test	count, N	: 15							
		1	1	2	3	4	S	6	7		
		Recovery of added	118.60 %	113.30 %	115.10 %	110.60 %	112.40 %	109.60 %	107.90 %	122.60 %	
		analyte, Recovery,	118.60 %	113.30 %	115.10 %	110.60 %	112.40 %	109.60 %	107.90 %	122.60 %	
		Approximated			_					-	
		concentration								-	
	Quantify	Standard solution			l			l			
	method and	added									
3	laboratory bias,	Date	9/23/2020	9/23/2020	_			_	_		
	u(bias)	0	4-4	•	10	11	12	13	14	15	
		Recovery of ad Recovery,	ded analyte,	125.80 %	121.20 %	110.50 %	117.90 %	105.60 %	105.40 %	111.60 %	
		Approximated concentration									
		Standard soluti	on added	_	_						
		Date		10/5/2020	10/5/2020	10/5/2020	10/5/2020	10/5/2020	10/5/2020	10/5/2020	
		$u(c_{recovery})$	- Julean	ne\2 + ufu	07)2						
		"(Crecovery)	- \ u(co	nc) + u(v	= 1.2	6 %					
			ΣN (100	04 - Pacos	12						
		RMS _{bias} =	21=1(100	N NECO	ver y ()						
		1		N	=	15.11 %					
			_		. 2						
		u(bias) =	RMS _{bias} ²	+ u(crecov	ery) = 15	.16 %					
\vdash	Convert										
4	components to	$u(R_w) = 0.4$									
	standard uncertainty	u(bias) = 1	15.16 %								
\Box	Calculate										
	combined	/		1: >2							
5	standard uncertainty,	$u_{\varepsilon} = \sqrt{u(R)}$	$(w)^2 + u($	bias)2 = 1	5.17 %						
	u_c										
\Box	Calculate										
6	expanded	$U = 2 \cdot u_c$	- 21.64								
"	uncertainty,	5 - 2 002	= 31 %								
\square	-										

9/17/2023

Summary of the method's measurement uncertainties

Method information

Method name Geosmin

Measurand Concentration

Sample Type (Matrix)

Potable water

Analysis

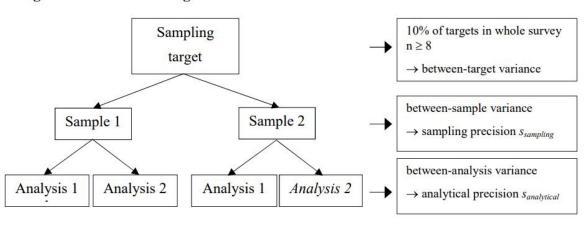
Principle HS-SPME-GC-MS/MS

(Analyzer

etc.)

Sample

preparation HS-SPME


Calculated Uncertainties at Different Measurand Levels

Concentration range (ng/l)	Within-lab Reproducibility Data	u (Rw)	Bias Data	u (bias)	Combined standard uncertainty	Expanded uncertainty
1-10	Control sample covering the whole analytical process	0.49 %	Recovery Test	15.16 %	15.17 %	31 %

Näykki et al., J. Chem. Metrology, 2014 https://www.syke.fi/envical/en

Uncertainty from sampling - empirical (top-down) approach

Figure 2: A balanced design

Balanced experimental design for empirical estimation of uncertainty (i.e. two-stage nested design), using the 'duplicate method'. Removal of *Analysis 2* on Sample 2 would result in the more cost-effective unbalanced design [Fig D2(b)], discussed in Note 2 above.

$$u = s_{meas} = \sqrt{s_{sampling}^2 + s_{analytical}^2}$$

In a survey across various sampling targets:

$$x = X_{true} + \varepsilon_{target} + \varepsilon_{sampling} + \varepsilon_{analytical}$$

$$s_{total}^2 = s_{between-target}^2 + s_{sampling}^2 + s_{analytical}^2 \label{eq:stotal}$$

Table 3: Uncertainty contributions in the empirical approach

Process	Effect class*				
	Random (precision)	Systematic (bias)			
Analysis	Analytical variability (combined contribution of random effects)	Analytical bias (combined effect of bias sources)			
Sampling	Sampling variability (dominated by heterogeneity and operator variations)	Sampling bias (combined effect of selection bias, operator bias etc.)			

^{*}The differentiation of random from systematic effects can depend on the context. A systematic effect in measurements by one organisation (e.g. analytical bias) can also be considered a random effect when viewed in the context of the consensus value from an inter-organisational proficiency test.

Table 4: Estimation of uncertainty contributions in the empirical approach

Process	Effect class				
	Random	Systematic (bias)			
Analysis duplicate analyses gives precision under repeatability conditions		e.g. validation data or CRM			
Sampling	Duplicate samples	Reference sampling target,			
		inter-organisational sampling trial			

Four classes of effects that contribute to the uncertainty of measurements, and methods for their estimation.

Source: Eurachem, UfS 2019 https://www.eurachem.org/

Validation of HS-SPME-GC-MS/MS methods for water T&O

Tri Kaloudis

Laboratory of Organic Micropollutants, Water Quality Dept., EYDAP SA, Greece Institute of Nanoscience & Nanotechnology, NCSR Demokritos, Greece

WaterTOP Training School "Microextraction in T&O analysis: fundamentals and applications TUC, Chania, Greece, 20-22/09/2023

