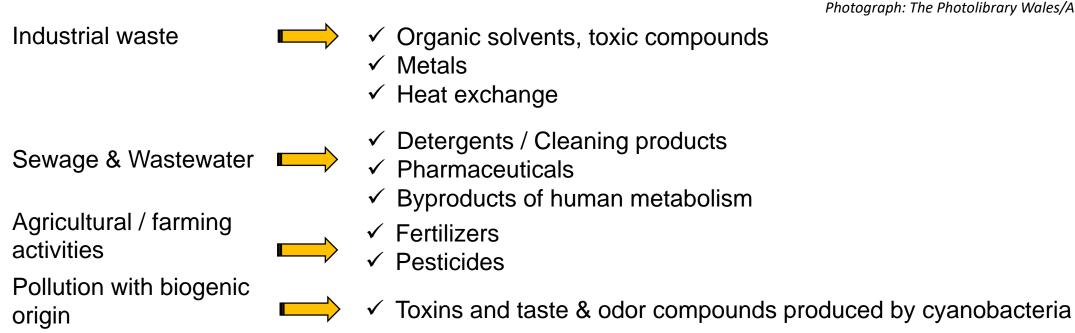
Photocatalysis in water treatment

Theodoros Triantis

Institute of Nanoscience and Nanotechnology National Center for Scientific Research "Demokritos"

Water Pollution


Petroleum spills, acid rain etc.

Pollution means the direct or indirect introduction, as a result of human activity, of substances or heat into water which may be harmful to human health or the quality of aquatic ecosystems, which result in damage to material property, or which impair or interfere with amenities and other legitimate uses of the environment.

Framework Directive 2000/60/EC of EU in the field of water policy

Other sources

Sources of water pollution

Photograph: The Photolibrary Wales/Alamy Stock Photo

Water treatment processes

Need for water purification from organic pollutants

Physical methods

- ✓ Filtration
- ✓ Coagulation, Flocculation
- ✓ Activated carbon

- Partial removal of pollutants
- Not destructive
- Regeneration/disposal of the polluted residual material is needed

Conventional oxidation processes

- ✓ Cl₂ / HClO / ClO₂
- ✓ 0₃
- √ H₂O₂
- ✓ Oxidation with KMnO₄

- All methods are able to degrade organic compounds
- Water quality parameters affect the process
- Formation of byproducts

Advanced Oxidation Processes

- ✓ Photolysis
- \checkmark UV/H₂O₂
- ✓ Photo-Fenton

Fenton

UV/O₃ ✓ TiO₂ Photocatalysis

Mode of Action

AOPs generate Reactive Oxygen Species (ROS) and sometimes other radicals as well, which react rapidly and non-selectively with a wide range of organic compounds

Research challenges (AOPs)

- New methods for the degradation of emerging contaminates are required
- > Identification of transformation products and assessment of residual toxicity
- > Synthesis of new materials with improved photocatalytic efficiency

Advantages

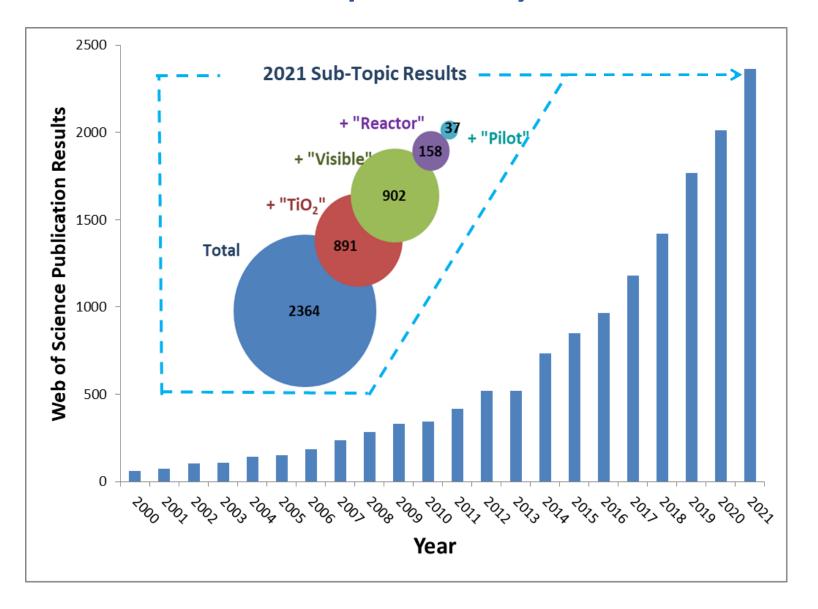
- More effective than conventional methods
- Mineralization of pollutants can be achieved
- Environmental friendly methods

Photocatalysis

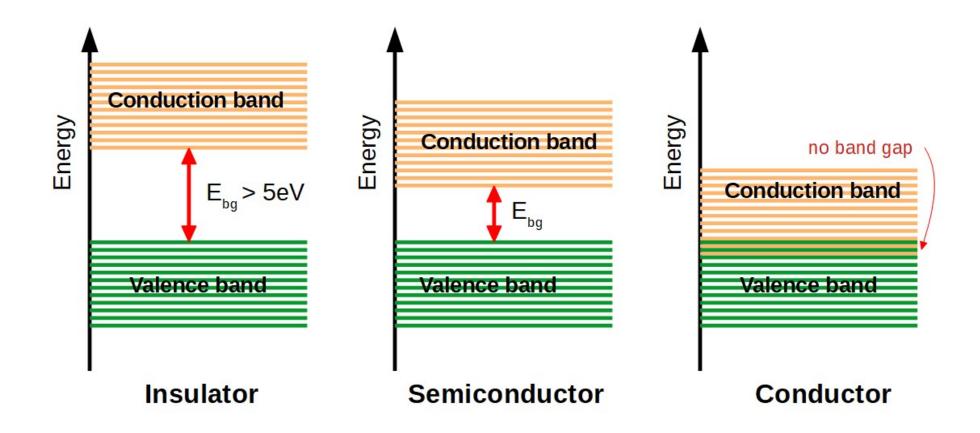
Photocatalysis involves the activation of a photocatalytic material or substance by light photons, which in turn increases the rate of a chemical reaction without being consuming.

Advantages of Photocatalysis in Organic Pollutants Degradation

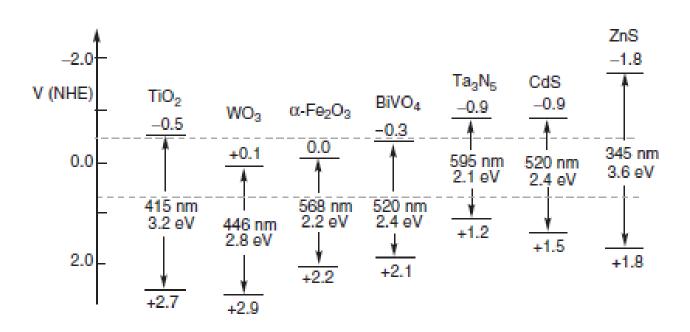
- Environmental friendly process
- Ambient temperature and atmospheric pressure
- ✓ Aquatic systems
- ✓ Use of O₂ as oxidant. No addition
- of other chemicals

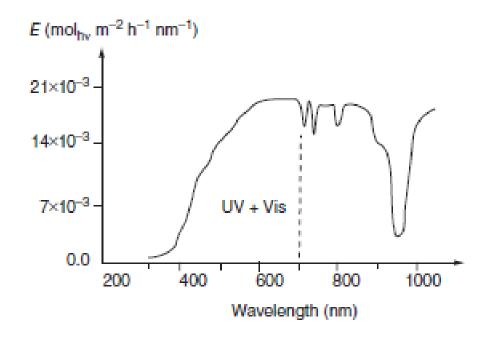

High efficient process because of ROS production (especially hydroxy radicals)

Complete mineralization of organic pollutants to CO₂, H₂O and inorganic ions


Degradation of plethora of organic pollutants such as: Phenols, chlorophenols, azodyes, pesticides, insecticides; cyanotoxins, T&O compounds

Publications trends in photocatalytic water treatment research


Search keywords: Photocat* Water Treatment


Semiconductor Photocatalysts

Schematic band diagram of insulators, semiconductors and conductors

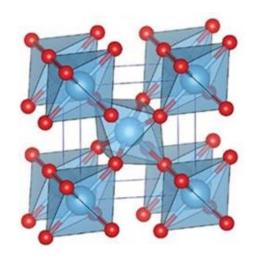
Semiconductor Photocatalysts

Band edge positions of some semiconductor powders in contact with neutral water. The dashed lines indicate water-splitting potentials.

Simplified sketch of direct solar irradiance 3% UV (λ <400 nm), \approx 47% visible (400-700 nm), 50% infrared

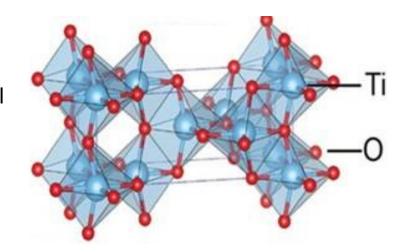
- Band edge positions depends on the nature of the liquid they are suspended in and the preparation methods
- Absorption of light with energy higher than that of the bandgap promotes electrons to higher-energy electronic states, which then relax to states located close to band edge
- Absorption of solar light requires the overlap of the SC absorption spectrum with the spectral composition of sunlight

Titanium Dioxide (TiO₂)


Why TiO₂

- Strong oxidizing power of valence band hole
- Excellent chemical and photochemical stability
- Availability / Low cost

- Low toxicity
- Band gap 3.2 eV
- Absorption of 5% of the solar light



Phases of TiO₂: Rutile, Anatase and Brookite

TiO₂(rutile)

crystal structure: tetragonall $E_{Bg}\approx 3.1 \text{ eV (i.e., } \lambda < 400 \text{ nm)}$ $\rho=4.23 \text{ g/cm}^3$

TiO₂(Anatase)

crystal structure: tetragonal $E_{Bg} \approx 3.3 \text{ eV (i.e., } \lambda < 376 \text{ nm)}$ $\rho = 3.78 \text{ g/cm}^3$

Commercial TiO₂ materials

AEROXIDE® TIO2 P 25

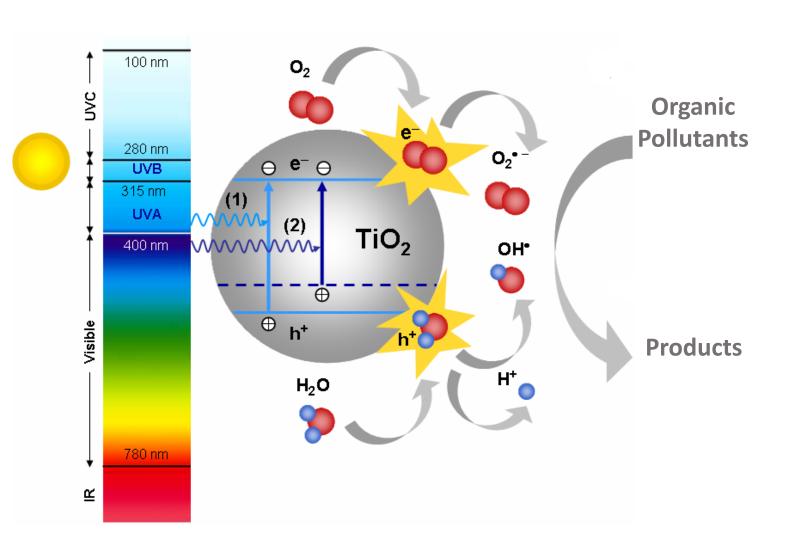
AEROXIDE® TiO2 P 25 is a pure, hydrophilic titanium dioxide (TiO2) with a very high specific surface area. Due to its unique ratio of Anatase and Rutile crystalline structure it is suitable for many catalytic and especially photo-catalytic applications. In addition, it can be used as very efficient UV filter.

TECHNICAL DATA				
appearance	white solid			
delivery form	free-flowing powder			
loss on drying	< 1.5 %			
pH-value	3.5 - 4.5			
SiO ₂ content	< 0.2 %			
specific surface area (BET)	35 - 65 m²/g			
tamped density	Approx. 140 g/l			

KRONOClean® 7000

TiO₂-photocatalyst

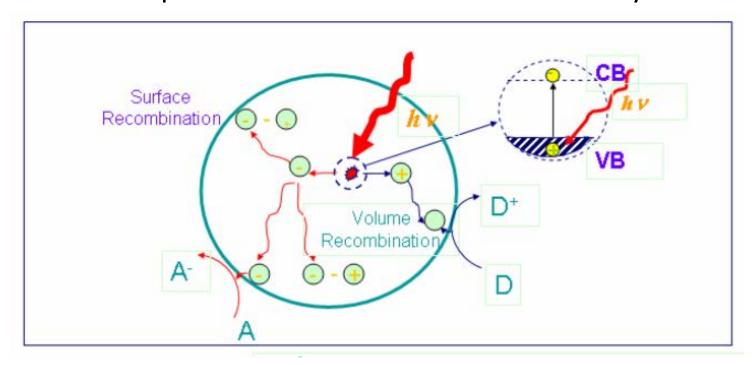
degrades pollutants with visible light and with UV radiation


Typical Product Characteristics

> 87.5 %
anatase
2.9 g/cm ³
approx. 15 nm
$> 225 \text{ m}^2/\text{g}$
350 g/l
\sim 67 g/100 g
\sim 210 g/100 g
200 °C
4-9

Producer: Evonik Industries AG, Germany

Producer: KRONOS Specialties GmbH, Germany


UV/TiO₂ photocatalysis – General concept

- Direct bandgap excitation of the semiconductor results in electron-hole separation
- Photogenerated holes as well as hydroxyl radicals oxidize the organic contaminant at the TiO₂ surface
- Electrons are scavenged by oxygen

UV/TiO₂ photocatalysis – Primary reactions

Schematic photoexcitation in a solid followed by deexcitation events

TiO₂ +
$$hv \rightarrow h_{vB}^{+} + e_{CB}^{-}$$
 (activation)
 $e_{CB}^{-} + h_{vB}^{+} \rightarrow heat$ (recombination)
 $H_2O + h_{vB}^{+} \rightarrow {}^{\bullet}OH + H^{+}$
 $O_2 + e_{CB}^{-} \rightarrow O_2^{\bullet -}$
 $O_2^{\bullet -} + H^{+} \rightarrow {}^{\bullet}OOH \quad pKa = 4.8$
 ${}^{\bullet}OOH + {}^{\bullet}OOH \rightarrow H_2O_2 + O_2$
 $H_2O_2 + e_{CB}^{-} \rightarrow {}^{\bullet}OH + OH^{-}$
 $O_2^{\bullet -} + h_{vB}^{+} \rightarrow {}^{1}O_2$

- Migration of electrons and holes to the semiconductor surface
- More efficient electron transfer if acceptor species are preadsorbed on surface
- Reactive oxygen species can be detected using EPR techniques and probe molecules

Terms and Units used in Photocatalysis

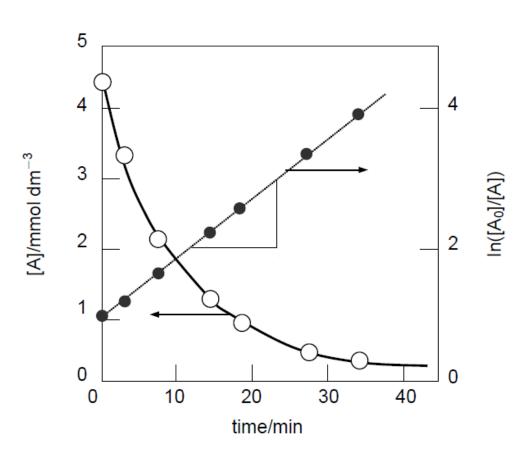
Term	Symbol	Units (SI)	Definition / Notes
Irradiance (traditional term: Intensity, I)	E	W m ²	Radiant power, P, of all wavelengths incident from all upward directions on a small element of surface containing the point under consideration divided by the area of the element. Refers to a parallel and perpendicular beam not scattered or reflected by the target or its surroundings
Fluence rate	E _o	W m ²	Total radiant power, P, incident from all directions onto a small sphere divided by the cross-sectional area of that sphere.
Photon flux	q_p	mol s ⁻¹	Number of <i>photons</i> (quanta of radiation, <i>N</i> p) per time interval. Common unit: einstein s ⁻¹ Einstein: 1mol of photons
Photon irradiance	E _p	mol m ⁻² s ⁻¹	Number of photons per time interval (photon flux), qp, incident from all upward directions on a small element of surface containing the point under consideration divided by the area of the element
Quantum efficiency or yield	Φ (λ)		Amount of reactant consumed or product formed per amount of photons absorbed The term applies only for monochromatic excitation
Photonic efficiency (or apparent quantum yield)	$\zeta_{ m p}$		Amount of reactant consumed or product formed per amount of incident photons

Photocatalytic reaction rate

(pseudo) first order kinetic model Langmuir-Hinshelwood kinetic model

$$A(fluid\ phase) \xrightarrow{k_1} A(adsorbed\ phase)$$
 (1)

$$\begin{array}{ccc}
 & \longleftarrow \\
 & \longleftarrow \\
 & A(adsorbed) & \xrightarrow{k_{-1}} & Products
\end{array} (2)$$

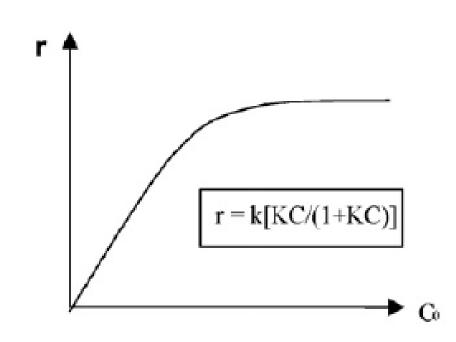

$$r = -\frac{dC}{dt} = \frac{kKC}{1 + KC}$$
 where r: reaction rate; k=rate constant; K=k₁/k₋₁= adsorption constant; C=concentration of reactant A

If KC<<1 (milimolar concentration range) the rate equation simplifies to first order

$$r = -\frac{dC}{dt} = kKC = k_{app}C$$
 (first order) $(K_{app} = kK)$

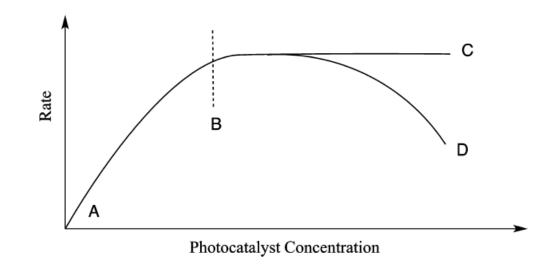
$$InC=InC_o-kKt => InC=InC_o-k_{app} C => InC_o/C=k_{app} t$$

If KC>>1 the reaction becomes zero order



B. Ohtani, J. Photochem. Photobiol. C: Photochem. Rev. 11 (2010) 157–178

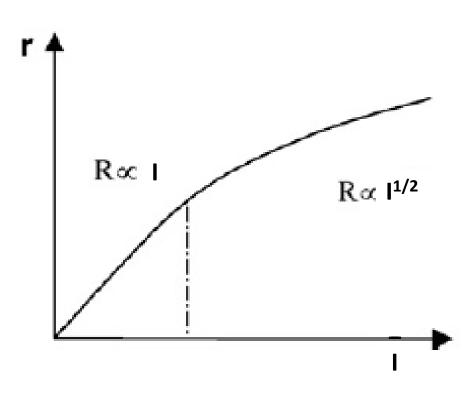
D.F. Ollis, Topics in Catalysis 35(3-4) (2005) 217-223. DOI: 10.1007/s11244-005-3827-z


Compound concentration

- Degradation rate increases with increase in substrate concentration till a certain level
- Increase of substrate concentration, increases the propability of reaction with reactive oxygen species
- Active sites on catalyst surface will be covered at high substrate concentrations. Further increase has no effect on reaction rate
- If substrate absorbs light, its increase in concentration can cause decrease in the reaction rate

Catalyst loading

- Linear increase till a certain level of concentration
- Availability of catalyst active sites and light penetration affect the reaction rate



- > Agglomeration and sedimentation of catalyst at high concentrations reduce the available surface for photon absorption
- ➤ High catalyst loading reduces the light penetration resulting in a rate decrease (trace BD)
- For TiO_2 materials with a surface area of 50-200 m²/g the optimum catalyst concentration ranges from 0.5 to 3.0 g/L

H. Kisch, et al., Journal of Physical Chemistry Letters, 2015. 6(10): p. 1907-1910.

Light intensity

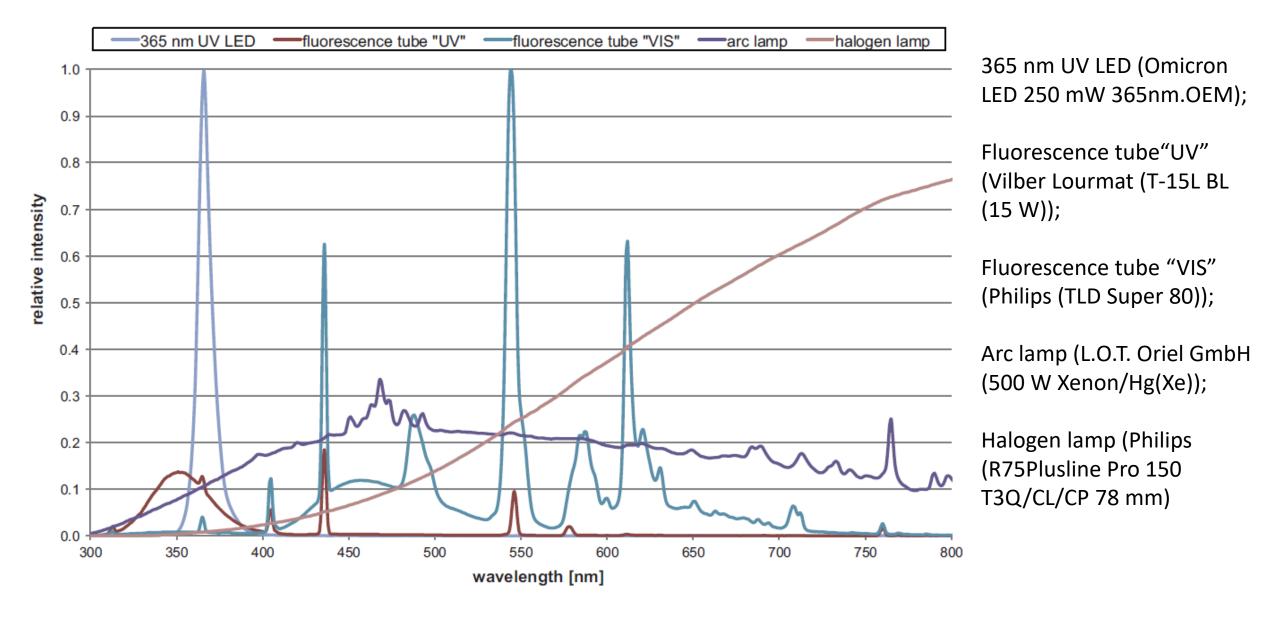
- r is proportional to *I* below a max value (20 mW/cm²), above which the rate follows a square root variation
- ➤ Too high light intensities increase the production of electro holes and subsequently their recombination rate
- ➤ For light intensities greater than a certain value (approx. 25 mW/cm²), the rate is independent of light intensity

J-M Herrmann, Applied Catalysis B: Environmental 99 (2010) 461–468

Effect of pH

- pH relates with the ionization state of catalyst surface
- pH influences the adsorption / desorption of reactants/products
- The point of zero charge (pzc) of TiO₂ (Evonik P25) is at pH 6.8
- High pH favors the formation of OH radicals through oxidation by holes

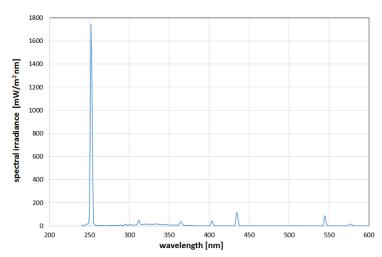
$$(H_2O + h_{vB}^+ \rightarrow ^{\bullet}OH + H^+)$$

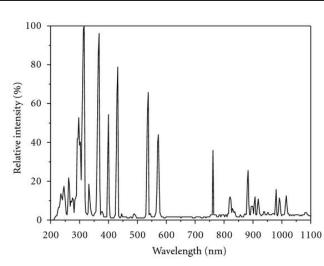

Presence of oxygen or oxidants

- Oxygen facilitates the scavenging of electrons and formation of superoxide radical
- Hydrogen peroxide and peroxydisulphate increase the rate through generation of reactive radicals
- High H₂O₂ concentration scavenge holes and OH radicals

T. Fotiou et al., Chemical Engineering Journal 261 (2015) 17–26

J-M Herrmann, Applied Catalysis B: Environmental 99 (2010) 461–468


Radiation sources widely used for photocatalysis analysis


E. Blume, S.P. Bloess / Catalysis Today 230 (2014) 240–244

Mercury Lamps

Parameter	Low Pressure Mercury Lamp	Medium Pressure Mercury Lamp	High Pressure Mercury Lamp
Life time (h)	>5000	>2000	>3000
Output range	80% in a narrow range around 254 nm	Broad but not much below 250 nm	Strong below 250 nm
Energy Density	Low (∼1 W/cm)	Moderate (~125 W/cm)	High (\sim 250 W/cm)
Electrical energy to photon energy	High (~30%)	Moderate (\sim 15% for 200–300 nm)	High (~30% for 200–300 nm)

Spectra of a low pressure mercury lamp

Spectra of a high pressure mercury lamp

J.R. Bolton, et al., 1995, The detoxification of waste water streams using solar and artificial UV light sources, ,in: Alternative Fuels and the Environment. F. S. Sterret, ed., Lewish Publishers. Boca Raton, FL. pp. 187-192.

Ferrioxalate actinometry

The method is based on the photochemical reduction of iron(III) to iron(III) during photooxidation of oxalic acid to CO₂

Ferrioxalate solution contains (NH_4) Fe $(SO_4)_2$ 0.005 M and $K_2C_2O_4$ 0.015 M in 0.1 N H_2SO_4 Addition of 1,10-phenanthroline in the irradiated solution facilitates the formation of a 1,10-phenanthroline -Fe²⁺ complex which exhibits a strong absorption at 510 nm

Calculations

$$n_{Fe^{2^{+}}} = \frac{6.023 \times 10^{20} \times V_{1} \times V_{3} \times A_{510 nm}}{V_{2} \times l \times \varepsilon_{510 nm}}$$
 Photon flux(number basis) = $\frac{n_{Fe^{2^{+}}}}{\Phi(\lambda) \times t \times (1-10^{-A})}$ (photons s⁻¹)

 V_1 : volume of actinometer solution irradiated (mL)

 V_2 : the volume of irradiated solution taken for analysis (mL)

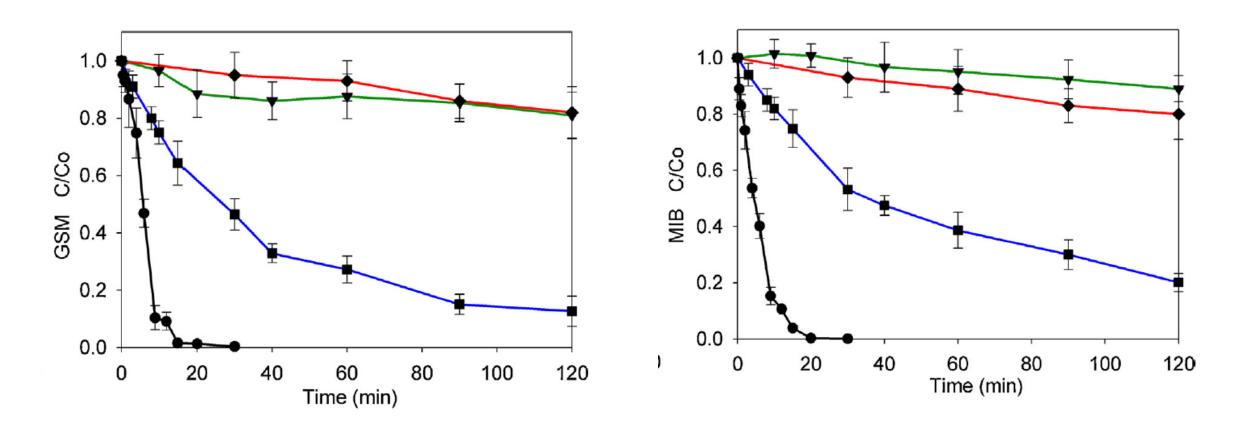
 V_3 : the final volume to which the aliquot V2 is diluted (mL)

1: cell path length (cm)

 ϵ_{510} : 1.11x 10⁴ M⁻¹ cm⁻¹ (molar extinction coefficient of Fe²⁺ complex with 1,10-Phenanthroline at 510 nm)

 $\Phi(\lambda)$: quantum yield of Fe²⁺ at wavelength of irradiation

(1.25 at 253.7 nm & 1.26 at 366 nm)


t: irradiation time (sec)

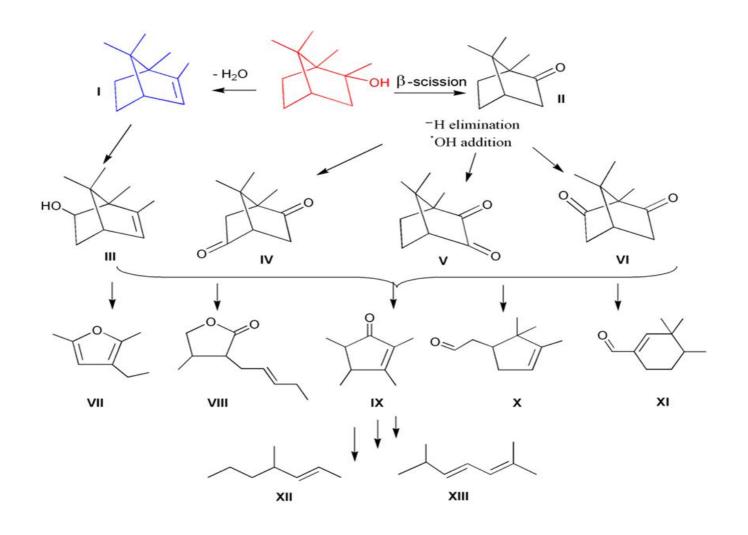
N_A: Avogadro constant

A: solution absorbance at 510 nm

All above calculations apply for monochromatic irradiation. In case of polychromatic irradiation, eq. 2 should be modified.

Photocatalytic degradation of Geosmin and 2-methylisoborneol using TiO₂

Photocatalytic degradation of GSM & MIB (1 mg L⁻¹) under UV-A (max= 365 nm) irradiation with TiO₂ (200 mg L⁻¹) in the presence and absence of scavengers. Conditions (\blacklozenge) Photolysis, (\blacklozenge) No scavenger, (\blacktriangledown) KBr and (\blacksquare) TBA (tert-butyl alcohol).


Intermediate products of GSM photocatalytic degradation using TiO₂ and UV-A

GSM: Geosmin

Identification of intermediate products using GC-MS

The presence of oxygenated degradation products suggests the involvement of OH radicals in the reaction mechanism

Intermediate products of MIB photocatalytic degradation using TiO₂ and UV-A

Identification of intermediate products using GC-MS

MIB: 2-methylisoborneol

Conclusions

- Light activation of TiO_2 involves the production of reactive oxygen species (•OH, $O_2^{\bullet-}$, 1O_2 , $HO_2^{\bullet-}$) that react with solutes through oxidative or reductive pathways.
- Recombination of photogenarated electrons and holes decrease the photocatalytic activity.
- Many different parameters (e.g. initial concentration of substrate, catalyst loading, pH, incident irradiation, presence of oxygen, adsorption, etc.) influence the photocatalytic degradation of pollutants, so evaluation of the catalyst performance is a difficult task.
- The photon flux of the incident radiation in the photolysis cell can be calculated with ferrioxalate dosimeter, by measuring the production of Fe²⁺ by photometry
- Photocatalytic degradation of organic compounds involves a large number of known and unknown transformation products.
- TiO₂ photocatalysis can be effective for water purification from a plethora of organic pollutants belonging to different chemical classes.

